e
-

vLHIL IR a i

Vi

‘ I Ill

crocontroller X

L
-
£

and Embeddec y§t3}h

Muhammad Ali Mazidi
Janice Gillispie Mazidi

E]I'he 8051 Microcontroller and Embedded
Systems
Using Assembly and C

Second Edition

Muhammad Ali Mazidi
Janice Gillispie Mazidi
Rolin D. McKinlay

CONTENTS

O Introduction to Computing

O The 8051 Microcontrollers

[8051 Assembly Language Programming

O Branch Instructions

3 1/0 Port Programming

O 8051 Addressing Modes

O Arithmetic & Logic Instructions And Programs

O 8051 Programming in C

O 8051 Hardware Connection and Hex File

O 8051 Timer/Counter Programming in Assembly and C

O 8051 Serial Port Programming in Assembly and C

O Interrupts Programming in Assembly and C

[8051 Interfacing to External Memory

[8051 Real World Interfacing I: LCD.,ADC AND
SENSORS

O LCD and Keyboard Interfacing

[8051 Interfacing with 8255

http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Introduction%20to%20Computing.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/8051%20Microcontrollers.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Assembly%20Language%20Programming.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Branch%20Instructions.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/IO%20Port%20Programming.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Addressing%20Modes.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Arithmetic%20Logic%20Instructions.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Programming%20in%20C.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Hardware%20Connection%20and%20Hex%20File.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Timer%20Programming.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Serial%20Port%20Programming.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Interrupts%20Programming.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Interfacing%20to%20External%20Memory.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/LCD%20and%20Keyboard.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Interfacing%20with%208255
Hossein
Sticky Note
Availabe from www.p30CodeNevis.ir

INTRODUCTION TO
COMPUTING

The 8051 Microcontroller and Embedded
Systems. Using Assembly and C
Mazidi, Mazidi and McKinlay

Chung-Ping Young
TRl

2 Numbering and coding systems
a Digital primer
o Inside the computer

OUTLINES

2 Human beings use base 10 (decimal)
NUMBERING

AND CODING arithmetic
SYSTEMS » There are 10 distinct symbols, O, 1, 2, ...,

9

PECINEICURER o Computers use base 2 (binary) system
Binary Number

Systems

» There are only 0 and 1

» These two binary digits are commonly
referred to as bits

NUMBERING
AND CODING
SYSTEMS

Converting
from Decimal
to Binary

o Divide the decimal number by 2
repeatedly

n Keep track of the remainders

a Continue this process until the quotient
becomes zero

o Write the remainders In reverse order
to obtain the binary number

Ex. Convert 25,, to binary

Quotient Remainder
25/2 = 12 1 LSB (least significant bit)
12/2 = 6 0
6/2 = 3 0 T
3/2 = 1 1
/2 = 0 1 MSB (most significant bit)

Therefore 25,, = 11001,

NUMBERING
AND CODING
SYSTEMS

Converting
from Binary to
Decimal

o Know the weight of each bit in a binary
number

a0 Add them together to get its decimal
equivalent

Ex. Convert 11001, to decimal

Weight: 24 23 22 21 20
Digits: 1 1 0 0 1
sum: 16 + 8+ 0+ 0+ 1 =25

n Use the concept of weight to convert a
decimal number to a binary directly

Ex. Convert 39,, to binary
32+0+0+4+2+1=39
Therefore, 39,, = 100111,

o Base 16, the

NUMBERING :

AND CODING heX&d@C/ma/ SyStem; Decimal Binary Hex

SYSTEMS Is used as a X o

convenient 2 0010 2

Hexadecimal representation of 3 o113

: 4 0100 4

System binary numbers 5 0101 5

> ex. 6 0110 6

It is much easier to ; 2(1)3(1) ;

represent a string of Os 9 1001 9

and 1s such as 10 1010 A

100010010110 as its 11 1011 B

hexadecimal equivalent of 12 1100 C

896H 13 1101 D

14 1110 E

15 1111 F

NUMBERING
AND CODING
SYSTEMS

Converting
between Binary
and Hex

o To represent a binary number as its
equivalent hexadecimal number
» Start from the right and group 4 bits at a

time, replacing each 4-bit binary number
with its hex equivalent

Ex. Represent binary 100111110101 in hex
1001 1111 0101
= 9 F 5

o To convert from hex to binary

» Each hex digit is replaced with its 4-bit
binary equivalent

Ex. Convert hex 29B to binary
2 9 B
= 0010 1001 1011

o Convert to binary first and then
NUMBERING 10 h
AND CODING convert to hex

SeEYE o Convert directly from decimal to hex
by repeated division, keeping track of

Converting the remainders
from Decimal

to Hex Ex. Convert 45, to hex
32 16 8 4 2 1
1 O 1 1 0 1 32+8+4+1=45
45,, = 0010 1101, = 2D,
Ex. Convert 629, to hex
512 256 128 64 32 16 8 4 2 1

1 0 O 1 1 1 01 01
629,, = 512+64+32+16+4+1 = 0010 0111 0101, = 2754

o Convert from hex to binary and then to
NUMBERING

AND CODING [
=Y o Convert directly from hex to decimal

by summing the weight of all digits

Converting
from Hex to Ex. 6B2,, = 0110 1011 0010,

1024 512 256 128 64 32 16 8 4 2

1
1 1 0 1 0 1 1 0 010
1024 + 512 + 128 + 32 + 16 + 2 = 1714,

Decimal

o Adding the digits together from the
NUMBERING east sianificant diait
AND CODING east significant digits

SYSTEMS > If the result Is less than 16, write that digit
as the sum for that position

Addition of Hex » If It Is greater than 16, subtract 16 from it

Numbers to get the digit and carry 1 to the next
digit
Ex. Perform hex addition: 23D9 + 94BE
23D9 LSD: 9 + 14 = 23 23 — 16 = 7 w/ carry
+ 94BE 1+13+11 =25 25-16 =9 w/ carry
B897 1+3+4=38

MSD: 2 +9 =8B

o If the second digit is greater than the
NUMBERING Erot b 16 f o o
AND CODING Irst, borrow 16 Trom the preceding

SYSTEMS digit

Ex. Perform hex subtraction: 59F — 2B8

Subtraction of

Hex Numbers 5OF LSD: 15-8=7

— 2B8 9+16-11=14=FEy
2E7 5-1-2=2

NUMBERING
AND CODING
SYSTEMS

ASCII Code

o The ASCII (pronounced “ask-E”) code
assigns binary patterns for

> Numbers 0 to 9

» All the letters of English alphabet,
uppercase and lowercase

» Many control codes and punctuation
marks
a The ASCII system uses 7 bits to
represent each code

Hex Symbol Hex Symbol
Selected ASCII codes Bkl A 61 a

42
43
44
59
S5A

B
C
D

Y

Z

62
63
64
79
TA

b
C
d

y
z

o Two voltage levels can be represented
as the two digits 0 and 1

o Signals in digital electronics have two
Binary Logic distinct voltage levels with built-in
tolerances for variations in the voltage

o A valid digital signal should be within
either of the two shaded areas

DIGITAL
PRIMER

1 Logic 1

O L N W H O

Logic 0

DIGITAL
PRIMER

Logic Gates

o AND gate

Boolean Expression Logic Diagram Symbol Truth Table
A X A B X
X =A - B :.— 0 0 0
B 0 1 0
1 0 0
1 1 1
Computer Science llluminated, Dale and Lewis
o OR gate
Boolean Expression Logic Diagram Symbol Truth Table
A X A B X
X =A+B —) 0 0 0
B 0 1 1
1 0 1
1 1 1

Computer Science llluminated, Dale and Lewis

DIGITAL
PRIMER

Logic Gates
(cont’)

o Tri-state buffer

o Inverter
Boolean Expression Logic Diagram Symbol Truth Table
X = A »‘3 0 1
1 0
Computer Science llluminated, Dale and Lewis
o XOR gate
Boolean Expression Logic Diagram Symbol Truth Table
A X B
X =A®B :)D—
B

el L =1 Bl [=)

O_I._l.ox

Computer Science llluminated, Dale and Lewis

o NAND gate

DIGITAL

PR' M ER Boolean Expression Logic Diagram Symbol Truth Table

A X A B X
. X = (A +« B)' :.)_
Logic Gates (4 * B) . O I
(cont’) 1 - 1
1 1 0
Computer Science llluminated, Dale and Lewis

o NOR gate
Boolean Expression Logic Diagram Symbol Truth Table
A X A B X
X = (A + B)' :Do— 0 0 1
B 0 1 0
1 0 0
1 1 0
Computer Science llluminated, Dale and Lewis

DIGITAL
PRIMER

Logic Design
Using Gates

Half adder

S

‘e - e = = -

1
D

(a) S=xy" +x'y
C=xy

Full adder

}

S
D
(b)S=xDy
C=xy

;A

N
J

Digital Design, Mano

DIGITAL
PRIMER

Logic Design
Using Gates
(cont’)

4-bit adder

B, A

P

FA

By A

!

FA

DIGITAL
PRIMER

Logic Design
Using Gates
(cont’)

o Decoders

» Decoders are widely used for address
decoding in computer design

Address Decoders

LSB LSB

Address decoder for 9 (1001,) Address decoder for 5 (0101,)

The output will be 1 if and The output will be 1 if and
only if the input is 1001, only if the input is 0101,

DIGITAL
PRIMER

Logic Design
Using Gates
(cont’)

a Flip-flops

» Flip-flops are frequently used to store data

: =
O—

o

Digital Design, Mano
(a) Logic diagram

—D

o
C D | Nextstate of Q
0 X | Nochange
10 O = 0; Reset state
0’ 1 1 | Q= liSetstate
(b) Function table
—

o The unit of data size

INSIDE THE

COMPUTER » Bit . a binary digit that can have the value
Oorl
Important » Byte : 8 bits
Terminology > Nibble : half of a bye, or 4 bits

» Word : two bytes, or 16 bits

o The terms used to describe amounts of
memory in IBM PCs and compatibles
> Kilobyte (K): 210 bytes
» Megabyte (M) : 220 bytes, over 1 million
» Gigabyte (G) : 230 bytes, over 1 billion
» Terabyte (T) : 240 bytes, over 1 trillion

o CPU (Central Processing Unit)
» Execute information stored in memory

a 1/0 (Input/output) devices

» Provide a means of communicating with
CPU

o Memory

» RAM (Random Access Memory) —

temporary storage of programs that
computer is running

* The data is lost when computer is off
» ROM (Read Only Memory) — contains

programs and information essential to
operation of the computer

* The information cannot be changed by use,
and is not lost when power is off

— It is called nonvolatile memory

INSIDE THE
COMPUTER

Internal
Organization of
Computers

INSIDE THE
COMPUTER

Internal
Organization of

Computers
(cont’)

Address bus

Memory

(RAM, ROM)

Peripherals

(monitor,
printer, etc.)

Data bus

o The CPU Is connected to memory and
1/0 through strips of wire called a bus

> Carries information from place to place
Internal = Address bus

Organization of

Computers
(cont)

INSIDE THE
COMPUTER

= Data bus
= Control bus

Address bus

Keyboard

A 1 A A A y Y Y 1

Data bus

Control bus

INSIDE THE
COMPUTER

Internal
Organization of

Computers
(cont’)

o Address bus

» For a device (memory or 1/0) to be
recognized by the CPU, it must be
assigned an address

* The address assigned to a given device must
be unique

= The CPU puts the address on the address bus,
and the decoding circuitry finds the device

o Data bus

» The CPU either gets data from the device
or sends data to it

o Control bus

» Provides read or write signals to the
device to indicate if the CPU is asking for
iInformation or sending it information

o The more data buses available, the
better the CPU

» Think of data buses as highway lanes

WIRelelVI8 1 \ore data buses mean a more
Data Bus expensive CPU and computer

» The average size of data buses in CPUs
varies between 8 and 64

o Data buses are bidirectional
> TO receive or send data

o The processing power of a computer is
related to the size of its buses

INSIDE THE
COMPUTER

a The more address buses available, the

INSIDE THE larger the number of devices that can
COMPUTER

be addressed

Vi vresral 0 The number of locations with which a
Address Bus CPU can communicate Is always equal
to 2%, where xis the address lines,

regardless of the size of the data bus

» ex. a CPU with 24 address lines and 16
data lines can provide a total of 224 or 16M
bytes of addressable memory

» Each location can have a maximum of 1
byte of data, since all general-purpose
CPUs are byte addressable

o The address bus 1s unidirectional

o For the CPU to process information,
INSIDE THE the data must be stored in RAM or

COMPUTER ROM, which are referred to as primary
memory
SERLCEUIE 0 ROM provides information that is fixed
to RAM and and permanent
ROM > Tables or initialization program

o RAM stores information that is not
permanent and can change with time
» Various versions of OS and application
packages
» CPU gets information to be processed

= first form RAM (or ROM)

= if it IS not there, then seeks it from a mass
storage device, called secondary memory, and
transfers the information to RAM

o Registers

INSIDE THE |

COMPUTER » The CPU uses registers to store
Information temporarily

Inside CPUs » Values to be processed

» Address of value to be fetched from memory

» In general, the more and bigger the
registers, the better the CPU
» Registers can be 8-, 16-, 32-, or 64-bit

* The disadvantage of more and bigger registers
Is the increased cost of such a CPU

INSIDE THE
COMPUTER

Inside CPUs
(cont’)

|
Program Counter

Instruction Register

Instruction decoder,
timing, and control

Internal
buses

Register A
Register B
Register C

Register D

sng SsaIppy

sng ele@ sng |04U0D

o ALU (arithmetic/logic unit)

> Performs arithmetic functions such as add,
subtract, multiply, and divide, and logic
functions such as AND, OR, and NOT

o Program counter

> Points to the address of the next
Instruction to be executed

= As each instruction is executed, the program
counter is incremented to point to the address
of the next instruction to be executed

o Instruction decoder

» Interprets the instruction fetched into the
CPU

= A CPU capable of understanding more
Instructions requires more transistors to design

INSIDE THE
COMPUTER

Inside CPUs
(cont’)

INSIDE THE
COMPUTER

Internal
Working of
Computers

Ex. A CPU has registers A, B, C, and D and it has an 8-bit
data bus and a 16-bit address bus. The CPU can access
memory from addresses 0000 to FFFFH

Assume that the code for the CPU to move a value to
register A is BOH and the code for adding a value to
register A is 04H

The action to be performed by the CPU is to put 21H into
register A, and then add to register A values 42H and 12H

INSIDE THE
COMPUTER

Internal
Working of

Computers
(cont’)

Ex. (cont’)

Action Code Data
Move value 21H into reg. A BOH 21H
Add value 42H to reg. A 04H 42H
Add value 12H to reg. A 04H 12H
Mem. addr. Contents of memory address

1400 (BO) code for moving a value to register A
1401 (21) value to be moved

1402 (04) code for adding a value to register A
1403 (42) value to be added

1404 (04) code for adding a value to register A
1405 (12) value to be added

1406 (F4) code for halt

INSIDE THE
COMPUTER

Internal
Working of

Computers
(cont’)

Ex. (cont’)
The actions performed by CPU are as follows:

1. The program counter is set to the value 1400H,
Indicating the address of the first instruction code to
be executed

> The CPU puts 1400H on address bus and sends it
out

= The memory circuitry finds the location
The CPU activates the READ signal, indicating to

memory that it wants the byte at location 1400H
= This causes the contents of memory location

1400H, which is BO, to be put on the data bus and
brought into the CPU

Ex. (cont)

INSIDE THE 3
COMPUTER > The CPU decodes the instruction BO
> The CPU commands its controller circuitry to bring
Internal into register A of the CPU the byte in the next
Working of memory location
Computers = The value 21H goes into register A
(cont’) > The program counter points to the address of the

next instruction to be executed, which is 1402H

. Address 1402 is sent out on the address bus to
fetch the next instruction

INSIDE THE
COMPUTER

Internal
Working of

Computers
(cont’)

Ex. (cont’)

4.

> From memory location 1402H it fetches code 04H

> After decoding, the CPU knows that it must add to
the contents of register A the byte sitting at the
next address (1403)

> After the CPU brings the value (42H), it provides
the contents of register A along with this value to
the ALU to perform the addition

. It then takes the result of the addition from the
ALU’s output and puts it in register A

= The program counter becomes 1404, the address
of the next instruction

INSIDE THE
COMPUTER

Internal
Working of

Computers
(cont’)

Ex. (cont)

5.

> Address 1404H is put on the address bus and the
code is fetched into the CPU, decoded, and
executed

= This code is again adding a value to register A
= The program counter is updated to 1406H

> The contents of address 1406 are fetched in and
executed

> This HALT instruction tells the CPU to stop
incrementing the program counter and asking for
the next instruction

8051 MICROCONTROLLERS

The 8051 Microcontroller and Embedded
Systems. Using Assembly and C
Mazidi, Mazidi and McKinlay

Chung-Ping Young
HL 1T

o Microcontrollers and embedded
Processors

a Overview of the 8051 family

OUTLINES

o General-purpose microprocessors
MICRO-

CONTROLLERS TSI
AND > No RAM

EMBEDDED > No ROM
PROCESSORS > No 1/0 ports

o Microcontroller has

Microcontroller

vs. General- » CPU (microprocessor)
Purpose > RAM
Microprocessor > ROM
» 1/0 ports
> Timer

» ADC and other peripherals

MICRO-
CONTROLLERS
AND
EMBEDDED
PROCESSORS

Microcontroller

vS. General-
Purpose

Microprocessor
(cont’)

General-
purpose
Micro-
Processor

CPU

Data bus

LT

Microcontroller

Address bus

CPU

1/O

RAM

Timer

ROM

Serial

COM
Port

o General-purpose microprocessors

MICRO-
» Must add RAM, ROM, /0 ports, and
CONTROLLERS timers externally to make them functional

AND > Make the system bulkier and much more
EMBEDDED expensive

PROCESSORS » Have the advantage of versatility on the
amount of RAM, ROM, and 1/0 ports

Wil - \icrocontroller

vs. General- > The fixed amount of on-chip ROM, RAM,
Purpose and number of 1/0 ports makes them ideal
Microprocessor for many applications in which cost and
(cont) space are critical

» In many applications, the space it takes,
the power it consumes, and the price per
unit are much more critical considerations
than the computing power

o An embedded product uses a
MICRO- microprocessor (or microcontroller) to
SRS do one task and one task only

AND » There is only one application software that
IS typically burned into ROM

a A PC, in contrast with the embedded
e system, can be used for any number of

for Embedded applications

Systems » It has RAM memory and an operating
system that loads a variety of applications
Into RAM and lets the CPU run them

> A PC contains or is connected to various

embedded products

» Each one peripheral has a microcontroller inside
it that performs only one task

EMBEDDED
PROCESSORS

o Home

MICRO- » Appliances, intercom, telephones, security systems,
CONTROLLERS garage door openers, answering machines, fax
AND machines, home computers, TVs, cable TV tuner,
VCR, camcorder, remote controls, video games,
EMBEDDED cellular phones, musical instruments, sewing
PROCESSORS machines, lighting control, paging, camera, pinball

machines, toys, exercise equipment

Microcontrollers l=lOlije

for Embedded > Telephones, computers, security systems, fax
Systems machines, microwave, copier, laser printer, color
(cont) printer, paging

o Auto

» Trip computer, engine control, air bag, ABS,
Instrumentation, security system, transmission
control, entertainment, climate control, cellular
phone, keyless entry

o Many manufactures of general-purpose
MICRO- microprocessors have targeted their
SO ROILLERS microprocessor for the high end of the

AND embedded market

> There are times that a microcontroller Is
Inadequate for the task

%86 PC 2 When a company targets a general-
Embedded purpose microprocessor for the

Applications embedded market, it optimizes the
processor used for embedded systems

o Very often the terms embedded
processor and microcontroller are used
Interchangeably

EMBEDDED
PROCESSORS

o One of the most critical needs of an

MIEROS embedded system Is to decrease
CONTROLLERS

AN power consumption and space

Sz 2 In high-performance embedded
PROCESSORS processors, the trend Is to integrate
more functions on the CPU chip and let

%86 PC designer decide which features he/she
Embedded wants to use
AU O |n many cases using x86 PCs for the
(cont) high-end embedded applications
» Saves money and shortens development
time

= A vast library of software already written

= Windows is a widely used and well understood
platform

o 8-bit microcontrollers
MICRO-

CONTROLLERS > Motorola’s 6811
AND > Intel’'s 8051

EMBEDDED > Zllog's Z8
PROCESSORS > Microchip’s PIC

o There are also 16-bit and 32-bit
Microcontroller microcontrollers made by various chip
makers

Choosing a

MICRO-
CONTROLLERS
AND
EMBEDDED
PROCESSORS

Criteria for

Choosing a
Microcontroller

o Meeting the computing needs of the
task at hand efficiently and cost
effectively

» Speed

» Packaging

» Power consumption

» The amount of RAM and ROM on chip

» The number of 1/0 pins and the timer on
chip

» How easy to upgrade to higher-

performance or lower power-consumption
versions

» Cost per unit

o Avallability of software development
tools, such as compilers, assemblers,
CONTARI\%LERS and debuggers

SVze el O Wide availability and reliable sources
PROCESSORS of the microcontroller

» The 8051 family has the largest number of

MICRO-

Criteria for diversified (multiple source) suppliers
Choosing a * Intel (original)
Microcontroller " Atmel
(cont’) » Philips/Signetics
= AMD
* Infineon (formerly Siemens)
= Matra

Dallas Semiconductor/Maxim

0 Inte_l Introduced 8051, referred as MCS-
o\ ==il2 el O1, in 1981

8051 FAMILY » The 8051 is an 8-bit processor
= The CPU can work on only 8 bits of data at a
8051 time

Microcontroller > The 8051 had

= 128 bytes of RAM

4K bytes of on-chip ROM

= Two timers

One serial port

Four 1/0 ports, each 8 bits wide
* 6 Interrupt sources

o The 8051 became widely popular after
allowing other manufactures to make

and market any flavor of the 8051, but
remaining code-compatible

External
Interrupts

OVERVIEW OF l l
8051 FAMILY

On-chip
ROM
for code

Interrupt

3051 Control

Microcontroller
(cont’)

——
sinduj J83uno)

Bus Serial
Control Port

< < PO P1P2P3 TXD RXD

Address/ Data

o The 8051 is a subset of the 8052
OVERVIEW OF

e\ IIh2 o The 8031 i1s a ROM-less 8051
> Add external ROM to it

8051 Family > You lose two ports, and leave only 2 ports
for 1/0 operations

Feature 8051 8052 8031

ROM (on-chip program
space in bytes)

4K 8K OK

RAM (bytes) 128 256 128
Timers 2 3 2
1/0 pins 32 32 32
Serial port 1 1 1

Interrupt sources

o 8751 microcontroller

OVERVIEW OF
8051 FAMILY > UV-EPROM
= PROM burner
Various 8051 = UV-EPROM eraser takes 20 min to erase

Vieretelatigal|1 0 AT89C51 from Atmel Corporation

» Flash (erase before write)
= ROM burner that supports flash
= A separate eraser is not needed

o DS89C4x0 from Dallas Semiconductor,
now part of Maxim Corp.

> Flash

= Comes with on-chip loader, loading program to
on-chip flash via PC COM port

o DS5000 from Dallas Semiconductor

OVERVIEW OF .
8051 FAMILY > NV-RAM (changed one byte at a time),
RTC (real-time clock)
Various 8051 = Also comes with on-chip loader
Vietereelalia)|S1F] 0 OTP (one-time-programmable) version
G of 8051

o 8051 family from Philips

> ADC, DAC, extended 1/0, and both OTP
and flash

8051 ASSEMBLY
LANGUAGE
PROGRAMMING

The 8051 Microcontroller and Embedded
Systems. Using Assembly and C
Mazidi, Mazidi and McKinlay

Chung-Ping Young
TRl

o Register are used to store information

INSégngHE temporarily, while the information
could be
Registers » a byte of data to be processed, or
» an address pointing to the data to be
fetched

o The vast majority of 8051 register are
8-bit registers
» There Is only one data type, 8 bits

a The 8 bits of a register are shown from
MSB D7 to the LSB DO

» With an 8-bit data type, any data larger
Registers than 8 bits must be broken into 8-bit
(cont’) chunks before it is processed

INSIDE THE
8051

most
significant bit

least
significant bit

! \
D7 D6 D5 D4 D3 D2 D1 DO

8 bit Registers

2o The most widely used registers
INSIDE THE

8051 » A (Accumulator)
» For all arithmetic and logic instructions

Registers > B, RO, R1, R2, R3, R4, R5, R6, R7

(cont’) » DPTR (data pointer), and PC (program
counter)

A

B

RO DPTR DPH DPL

R1

R2
R3

PC PC (Program counter)

R4
RS
R6
R7

MOV destination, source ;copy source to dest.

INSIDE THE » The instruction tells the CPU to move (in reality,
8051 COPY) the source operand to the destination
operand
MOV “#” signifies that it is a value
Instruction /_
MOV A,#SSH ;load value 55H Into reg. A
MOV RO,A ;copy contents of A into RO
; (now A=R0O=55H)
MOV R1,A ;copy contents of A iInto R1
; (now A=R0O=R1=55H)
MOV R2,A ;copy contents of A Into R2

; (now A=R0=R1=R2=55H)

MOV R3,#95H ;load value 95H Into R3
; (now R3=95H)

MOV A,R3 ;copy contents of R3 into A
-now A=R3=95H

INSIDE THE
8051

MOV

Instruction
(cont’)

o Notes on programming
» Value (proceeded with #) can be loaded
directly to registers A, B, or RO — R7

= MOV A, #23H

= MOV R5, #OF9H
—/

If it’s not preceded with #,

it means to load from a

Add a 0 to indicate that memory location

F is a hex number and
not a letter

» If values O to F moved into an 8-bit
register, the rest of the bits are assumed

all zeros
= “MOV A, #5”, the result will be A=05; i.e., A

= 00000101 in binary
» Moving a value that is too large into a

register will cause an error
= MOV A, #7F2H ; ILLEGAL: 7F2H>8 bits (FFH)

ADD A, source ;ADD the source operand
‘to the accumulator

INSIDE THE

8051 » The ADD instruction tells the CPU to add the source
byte to register A and put the result in register A
ADD » Source operand can be either a register or
Instruction Immediate data, but the destination must always

be register A

= “ADD R4, A” and “ADD R2, #12H” are invalid
since A must be the destination of any arithmetic

operation

MOV A, #25H ;load 25H 1Into A

MOV R2, #34H ;load 34H 1nto R2

ADD A, R2 ;add R2 to Accumulator
There are always [N (A = A+ R2)
many ways to write =
the same program, MOV A, #25H ; load one operand
depending on the ;into A (A=25H)

;operand 34H to A

o In the early days of the computer,
8051 : -
programmers coded in machine language,
ASSEMBLY consisting of 0Os and 1s
PROGRAMMING .
» Tedious, slow and prone to error

o Assembly languages, which provided
mnemonics for the machine code instructions,

plus other features, were developed

» An Assembly language program consist of a series
of lines of Assembly language instructions

o Assembly language is referred to as a /ow-
level language

» It deals directly with the internal structure of the
CPU

Structure of
Assembly
Language

o Assembly language instruction includes

8051 » a mnemonic (abbreviation easy to remember)
ASSEMBLY = the commands to the CPU, telling it what those
PROGRAMMING to do with those items
» optionally followed by one or two operands
Structure of » the data items being manipulated

Assembly
Language

o A given Assembly language program is
a series of statements, or lines

» Assembly language instructions
* Tell the CPU what to do

» Directives (or pseudo-instructions)
= Glve directions to the assembler

8051
ASSEMBLY
PROGRAMMING

Structure of
Assembly
Language

Mnemonics

produce
opcodes

2 An Assembly language instruction

consists of four fields:
[label:] Mnemonic [operands] [;comment]

e —

;start(origin) at location

MOV R5, 5H -load 25H into R5

MOV R7, #3 5 Directives do not
MOV \ A, #0 Ioad Ol &« generate any machine
ADD / A, R5 -add conten B ICHE,

-now A = only by the assembler
add contents of R7 to A
ow A = A + RY

to A value 12H
A=A+ 12H

ADD A, RY

ADD A, #12H

Comments may be at the end of a
The label field allows line or on a line by themselves
the program to referto a § The assembler ignores comments

line of code by name

o The step of Assembly language
ASSEMBLING _ |
AND RUNNING program are outlines as follows:

AN 8051 1) First we use an editor to type a program,
PROGRAM many excellent editors or word
processors are available that can be used
to create and/or edit the program

= Notice that the editor must be able to produce
an ASCII file

* For many assemblers, the file names follow
the usual DOS conventions, but the source file
has the extension “asm* or “src”, depending
on which assembly you are using

2) The “asm” source file containing the
ASSEMBLING program code created in step 1 is fed to
AND RUNNING an 8051 assembler

AN 8051 = The assembler converts the instructions into

PROGRAM machine code
(cont) = The assembler will produce an object file and

a list file
= The extension for the object file is “obj” while
the extension for the list file is “Ist”
3) Assembler require a third step called
linking
= The linker program takes one or more object

code files and produce an absolute object file
with the extension “abs”

= This abs file is used by 8051 trainers that
have a monitor program

ASSEMBLING
AND RUNNING
AN 8051

PROGRAM
(cont’)

4) Next the “abs” file is fed into a program
called “OH” (object to hex converter)
which creates a file with extension “hex”
that is ready to burn into ROM
= This program comes with all 8051 assemblers

= Recent Windows-based assemblers combine
step 2 through 4 into one step

ASSEMBLING
AND RUNNING
AN 8051
PROGRAM

Steps to Create
a Program

EDITOR

PROGRAM

myfile.asm
ASSEMBLER
PROGRAM

myfile.lst

myfile.obj Other obj files

LINKER
PROGRAM

myfile.abs

OH
PROGRAM

myfile.hex

ASSEMBLING

o The Ist (list) file, which Is optional, is
very useful to the programmer

AND RUNNING _
AN 8051 » It lists all the opcodes and addresses as
PROGRAM well as errors that the assembler detected
» The programmer uses the Ist file to find
Ist File the syntax errors or debug
1 0000 ORG OH ;start (origin) at O
2 0000 7D25 MOV R5,#25H :;load 25H into R5
3 0002 7F34 MOV R7,#34H ;load 34H i1nto R7
4 0004 7400 MOV A, #0 ;load O Into A
5 0006 2 -add contents of R5 to A
chow A = A + R5
6 0007 2 -add contents of R7 to A
chow A = A + RY
7 0008 2412 ADD AX#12H) ;add to A value 12H
how A = A + 12H
8 000A 8OEF HERE: SJMP HERE;stay in this loop
9 0006\ END ;end of asm source file

\—
address

PROGRAM
COUNTER AND
ROM SPACE

Program
Counter

a The program counter points to the
address of the next instruction to be
executed

» As the CPU fetches the opcode from the
program ROM, the program counter is
Increasing to point to the next instruction

o The program counter is 16 bits wide

» This means that it can access program
addresses 0000 to FFFFH, a total of 64K
bytes of code

o All 8051 members start at memory
RO ERAN ddress 0000 when they d
o =] Address when they're powere

ROM SPACE up
» Program Counter has the value of 0000

Power up » The first opcode is burned into ROM
address 0000H, since this is where the
8051 looks for the first instruction when it
IS booted

» We achieve this by the ORG statement in
the source program

o Examine the list file and how the code

PROGRAM Is placed in ROM
COUNTER AND pEEEE ORG OH -start (origin) at 0
ROM SPACE 2 0000 7D25 MOV R5,#25H ;load 25H into R5
3 0002 7F34 MOV R7,#34H ;load 34H into R7
4 0004 7400 MOV A,#0 ;load O Into A
: : 5 0006 2D ADD A,R5 ;add contents of R5 to A
Placing Code In ;now A = A + R5
6 0007 2F ADD A,R7 ;add contents of R7 to A
ROM ;how A = A + R7
7 0008 2412 ADD A,#12H ;add to A value 12H
;chow A = A + 12H
8 O00A 8OEF HERE: SJMP HERE ;stay in this loop
9 000C END ;end of asm source Tile
ROM Address Machine Language Assembly Language
0000 7D25 MOV R5, #25H
0002 TF34 MOV R7, #34H
0004 7400 MOV A, #0
0006 2D ADD A, R5
0007 2F ADD A, R7
0008 2412 ADD A, #12H

000A 80EF HERE: SJIMP HERE

o After the program is burned into ROM,

PROGRAM th q q q aced
COUNTER AND e opcode and operand are placed In
ROM SPACE ROM memory location starting at 0000

ROM contents

Address Code

Placing Code In

0000 7D
FQC)BA 0001 25
(Cont’) 0002 7F
0003 34
0004 74
0005 00
0006 2D
0007 2F
0008 24
0009 12
000A 80

000B FE

PROGRAM
COUNTER AND
ROM SPACE

Executing
Program

o A step-by-step description of the
action of the 8051 upon applying
power on it

1.

When 8051 is powered up, the PC has
0000 and starts to fetch the first opcode
from location 0000 of program ROM

= Upon executing the opcode 7D, the CPU
fetches the value 25 and places it in R5

= Now one instruction is finished, and then the
PC is incremented to point to 0002, containing
opcode 7F

Upon executing the opcode 7F, the value

34H is moved into R7

= The PC is incremented to 0004

a (cont’)

PROGRAM _ . . .
COUNTER AND 3. The instruction at location 0004 is
ROM SPACE executed and now PC = 0006
4. After the execution of the 1-byte
Executing Instruction at location 0006, PC = 0007
Program 5. Upon execution of this 1-byte instruction
(cont’) at 0007, PC is incremented to 0008

= This process goes on until all the instructions
are fetched and executed

= The fact that program counter points at the
next instruction to be executed explains some
microprocessors call it the /nstruction pointer

2 No member of 8051 family can access
RO ERAN than 64K bytes of opcod
COUNTER AND [ERERALLE] ytes of opcode
ROM SPACE » The program counter is a 16-bit register

Byte Byte Byte

« » B —
hal Ll

0000

ROM Memory
Map in 8051 0000
Family

A
v

0000

OFFF

8751
ATS89C51 3FFF

DS89C420/30

TFFF

DS5000-32

o 8051 microcontroller has only one data

8051 DATA .
TYPES AND type - 8 bits
DIRECTIVES > The size of each register is also 8 bits
» It Is the job of the programmer to break
Data Type down data larger than 8 bits (00 to FFH,

or O to 255 in decimal)
» The data types can be positive or negative

8051 DATA
TYPES AND
DIRECTIVES

Assembler
Directives

o The DB directive Is the most widely

used data directive in the assembler

> It Is used to define the 8-bit data

> When DB Is used to define data, the
numbers can be in decimal. binary, hex,

ASCII formats number is optional, but using
“B” (binary) and “H”

The Assembler will
convert the numbers
into hex

ORG 500H (hexadecimal) for the others is
DATAL: DB 8 ! -DECIMAL (1C in Hex)
DATA2: DB 00110101 -BINARY (35 in Hex)
DATA3: DB 39H

DATA6: DB “My name i1s Joe”

Define ASCII strings larger
than two characters

ORG SILpm Place ASCII in quotation marks

DATA4: DB “2591” The Assembler will assign ASCI|I

ORG 518H code for the numbers or characters

_/ -ASCI1 CHARACTERS

8051 DATA
TYPES AND
DIRECTIVES

Assembler

Directives
(cont’)

o ORG (origin)
> The ORG directive Is used to indicate the
beginning of the address

> The number that comes after ORG can be
either in hex and decimal

* |f the number is not followed by H, it is decimal
and the assembler will convert it to hex

o END

> This indicates to the assembler the end of
the source (asm) file
> The END directive Is the last line of an

8051 program

= Mean that in the code anything after the END
directive is ignored by the assembler

8051 DATA
TYPES AND
DIRECTIVES

Assembler

directives
(cont’)

o EQU (equate)

» This Is used to define a constant without
occupying a memory location

» The EQU directive does not set aside

storage for a data item but associates a
constant value with a data label

= When the label appears in the program, its
constant value will be substituted for the label

8051 DATA
TYPES AND
DIRECTIVES

Assembler

directives
(cont’)

o EQU (equate) (cont)

» Assume that there is a constant used In
many different places in the program, and
the programmer wants to change its value
throughout

» By the use of EQU, one can change it once and
the assembler will change all of its occurrences

Use EQU for the
counter constant

COUNT EQU 25

MOV R3, #CO{JNT

N :
The constant is used to
load the R3 register

o The program status word (PSW)
register, also referred to as the 7lag
register, 1s an 8 bit register

Program Status » Only 6 bits are used

Word = These four are CY (carry), AC (auxiliary carry), P
(parity), and OV (overflow)

— They are called conditional flags, meaning
that they indicate some conditions that
resulted after an instruction was executed

» The PSW3 and PSW4 are designed as RSO and
RS1, and are used to change the bank

> The two unused bits are user-definable

FLAG BITS AND
PSW REGISTER

CY | AC| FO |RS1|RSO| OV | -- P
FLAG BITS AND N A carry from D3 to D4

CY PSW: Carry flag. _
PSW REGISTER Carry out from the d7 bit

AC PSW.6 Auxiliary carry flag.
-- PSW.5 Available to the user for general purpose
LIRSS, o) b\ 4 Register Bank selector bit 1.

Word (cont) RSO PSW.3 Register Bank selector bit 0.
}V PSW.2 Overflow flag.

Reflect the number of 1s

The result of -- / PSW.1 User definable bit. HEERINEIPA
signed number PSW.0 Parity flag. Set/cleared by hardware each
operation Is too instruction cycle to indicate an odd/even
{ﬁregﬁigcr?-%srlggr number of 1 bits in the accumulator.
bit to overflow RS1 RSO Register Bank Address
into the sign bit 0 5 0 00H — 07H

0 1 1 O8H - OFH

1 0 2 10H - 17H

1 1 3 18H - 1FH

FLAG BITS AND
PSW REGISTER

ADD
Instruction And
PSW

Instructions that affect flag bits

Instruction

O
<

ADD

ADDC

SUBB

MUL

DIV

DA

RPC

PLC

SETB C

CLRC

CPLC

ANL C, bit

ANL C, /bit

ORL C, bit

ORL C, /bit

MOV C, bit

CINE

X[X[I[X|X|X[X|X|O|RP|X|X|X|[O|lO|X|X|X

o The flag bits affected by the ADD
Instruction are CY, P, AC, and OV

FLAG BITS AND
PSW REGISTER

Example 2-2

ADD Show the status of the CY, AC and P flag after the addition of 38H
Instruction And and 2FH in the following instructions.

PS\W MOV A, #38H
(cont’) ADD A, #2FH ;after the addition A=67H, CY=0
Solution:
38 00111000
+2F 00101111
67 01100111
CY = 0 since there is no carry beyond the D7 bit

AC = 1 since there is a carry from the D3 to the D4 bi

P = 1 since the accumulator has an odd number of 1s (it has five 1s)

FLAG BITS AND
PSW REGISTER

ADD
Instruction And

PSW
(cont’)

Example 2-3

Show the status of the CY, AC and P flag after the addition of 9CH
and 64H in the following instructions.

MOV A, #9CH
ADD A, #64H ;after the addition A=00H, CY=1

Solution:
9C 10011100
+ 64 01100100
100 00000000

CY = 1 since there is a carry beyond the D7 bit
AC =1 since there is a carry from the D3 to the D4 bi

P = 0 since the accumulator has an even number of 1s (it has zero 15s)

FLAG BITS AND
PSW REGISTER

ADD
Instruction And

PSW
(cont’)

Example 2-4

Show the status of the CY, AC and P flag after the addition of 88H
and 93H in the following instructions.

MOV A, #88H
ADD A, #93H ;after the addition A=1BH, CY=1
Solution:
88 10001000
+ 93 10010011
11B 00011011

CY = 1 since there is a carry beyond the D7 bit
AC = 0 since there is no carry from the D3 to the D4 bi

P = 0 since the accumulator has an even number of 1s (it has four 15s)

o There are 128 bytes of RAM In the
REGISTER 3051

EAULSSRIE » Assigned addresses 00 to 7FH

o The 128 bytes are divided into three
RAM Memory different groups as follows:

Space 1) A total of 32 bytes from locations 00 to
Allocation 1F hex are set aside for register banks
and the stack

2) A total of 16 bytes from locations 20H to
2FH are set aside for bit-addressable
read/write memory

3) A total of 80 bytes from locations 30H to
/FH are used for read and write storage,
called scratch pad

STACK

8051
REGISTER
BANKS AND
STACK

RAM Memory
Space

Allocation
(cont’)

RAM Allocation in 8051

Scratch pad RAM

Bit-Addressable RAM

Register Bank 3

Register Bank 2

Register Bank 1 (stack)

Register Bank 0

o These 32 bytes are divided into 4

8051 . . .
REGISTER banks of reglsters In which each bank
BANKS AND has 8 reglsters, RO-R7
STACK > RAM location from O to 7 are set aside for
bank O of RO-R7 where RO iIs RAM location
Register Banks 0, R1 is RAM location 1, R2 is RAM

location 2, and so on, until memory
location 7 which belongs to R7 of bank O

> It IS much easier to refer to these RAM
locations with names such as RO, R1, and
so on, than by their memory locations
0 Register bank 0O is the default when
8051 is powered up

8051
REGISTER
BANKS AND
STACK

Register Banks
(cont’)

Register banks and their RAM address

L N Wb~ 01 O

o

Bank O

A A
o1

A
w

A
N

N Q

co © > WO U m T

A
|

k1

9]
Q
>

N w AN ol ~

A
(IS

Bank 2
17 R7
s
15 el
14 R4
13 R3
12 R2
11 R1

Bank 3
1F R7
e [
1D R5
1C sy
1B sk
1A BE¥)
19 R1

o We can switch to other banks by use

REg?g%ER of the PSW register
BANKS AND » Bits D4 and D3 of the PSW are used to
STACK select the desired register bank
» Use the bit-addressable instructions SETB
Register Banks and CLR to access PSW.4 and PSW.3

(cont’)

PSW bank selection

RS1(PSW.4) RSO(PSW.3)

Bank O 0 0
Bank 1 0 1
Bank 2 1 0
Bank 3 1 1

Example 2-5
8IS MOV RO, #99H load RO with 99H
) ; loa wi
REGISTER MOV R1, #85H ;load R1 with 85H
BANKS AND
STACK
Example 2-6
Reqi r Bank MOV 00, #99H - RAM Iocation OOH has 99H
egiste , anks MOV 01, #85H -RAM location O1H has 85H
(cont’)
Example 2-7
SETB PSW.4 ;select bank 2
MOV RO, #99H -RAM location 10H has 99H
MOV R1, #85H -RAM location 11H has 85H

8051
REGISTER
BANKS AND
STACK

Stack

o The stack is a section of RAM used by
the CPU to store information
temporarily

> This information could be data or an
address

o The register used to access the stack
Is called the SP (stack pointer) register

» The stack pointer in the 8051 is only 8 bit

wide, which means that it can take value
of 00 to FFH

» When the 8051 is powered up, the SP
register contains value 07

= RAM location 08 is the first location begin used
for the stack by the 8051

8051
REGISTER
BANKS AND
STACK

Stack
(cont’)

a The storing of a CPU register in the
stack is called a PUSH

» SP Is pointing to the last used location of
the stack

» As we push data onto the stack, the SP Is
Incremented by one
* This is different from many microprocessors

o Loading the contents of the stack back
Into a CPU register is called a POP

» With every pop, the top byte of the stack
IS copied to the register specified by the
Instruction and the stack pointer is
decremented once

8051
REGISTER
BANKS AND
STACK

Pushing onto
Stack

Example 2-8

Show the stack and stack pointer from the following. Assume the

default stack area.

MOV R6, #25H
MOV R1, #12H
MOV R4, #OF3H

PUSH 6

PUSH 1

PUSH 4

Solution:
After PUSH 6

0B 0B

0A 0A

09 09

08 08 43

Start SP =07 SP =108

After PUSH 1
0B
OA

After PUSH 4

09
08
SP =09

SP = 0A

8051
REGISTER
BANKS AND
STACK

Popping From
Stack

Example 2-9

Examining the stack, show the contents of the register and SP after
execution of the following instructions. All value are in hex.

POP 3 - POP stack into R3

POP 5 : POP stack 1nto R5

POP 2 : POP stack 1nto R2
Solution:

After POP 3 After POP 5 After POP 2
0B 0B
0A 0A
09 09
08

Start SP = 0B SP = 0A SP =09 SP = 08
Because locations 20-2FH of RAM are reserved

for bit-addressable memory, so we can change the

SP to other RAM location by using the instruction
“MOV SP, #XX”

o The CPU also uses the stack to save

8051 . .
REGISTER the address of the instruction just
BANKS AND below the CALL instruction

STACK » This is how the CPU knows where to
resume when it returns from the called

CALL subroutine

Instruction And

Stack

8051
REGISTER
BANKS AND
STACK

Incrementing
Stack Pointer

o The reason of incrementing SP after
push Is

» Make sure that the stack is growing
toward RAM location 7FH, from lower to
upper addresses

» Ensure that the stack will not reach the
bottom of RAM and consequently run out
of stack space

» If the stack pointer were decremented
after push

= WWe would be using RAM locations 7, 6, 5, etc.
which belong to R7 to RO of bank 0, the default
register bank

o When 8051 is powered up, register
s pank 1 and the stack are using th
REGISTER ank 1 and the stack are using the
BANKS AND same memory space

STACK > We can reallocate another section of RAM
to the stack

Stack and Bank
1 Conflict

8051
REGISTER
BANKS AND
STACK

Stack And Bank
1 Conflict

(cont’)

Example 2-10

Examining the stack, show the contents of the register and SP after
execution of the following instructions. All value are in hex.

MOV SP,

MOV R2,

MOV R1,

MOV R4,

PUSH 2

PUSH 1

PUSH 4
Solution:

63

62

61

60

#5FH :make RAM location 60H
:First stack location
#25H

#12H
#0F3H

After PUSH 2 After PUSH 1 After PUSH 4
63 63

62 62

61
60 43 60
Start SP = 5F SP =60 SP =61 SP =62

61

JUMP, LOOP AND CALL
INSTRUCTIONS

The 8051 Microcontroller and Embedded
Systems. Using Assembly and C
Mazidi, Mazidi and McKinlay

Chung-Ping Young
TRl

0 Repeating a sequence of instructions a
certain number of times is called a
loop

» Loop action is performed by
DINZ reg, Label

The register is decremented

If it is not zero, it jJumps to the target address
referred to by the label

Prior to the start of loop the register is loaded
ith the counter for the number of repetitions

= Cqunter can be RO — R7 or RAM location

LOOP AND
JUMP
INSTRUCTIONS

Looping

A loop can be repeated a
maximum of 255 times, if
R2 is FFH

MOV ,#O ;A=0, clear ACC

MOV 2,#10 ;load counter R2=10

AGAIN: ADD A,#03 ;add 03 to ACC

DINZ R2,AGAIN ;repeat until R2=0,10 times
MOV R5,A .save A 1In R5

-This progkién adds value 3 to the ACC ten times

o If we want to repeat an action more
LOOP AND . .
JUMP times than 256, we use a loop Inside a
NSctlearle iy loop, which is called nested loop

» We use multiple registers to hold the
Nested Loop count

Write a program to (a) load the accumulator with the value 55H, and
(b) complement the ACC 700 times

MOV A,#55H ;A=55H

MOV R3,#10 ;R3=10, outer loop count
NEXT: MOV R2,#70 ;R2=70, 1nner loop count
AGAIN: CPL A ;complement A register

DINZ R2,AGAIN ;repeat 1t 70 times

DINZ R3,NEXT

o Jump only if a certain condition Is met

LOOP AND JZ label ;jump if A=0
JUMP MOV A,RO -A=RO
INSTRUCTIONS JZ OVER -jump if A=0
MOV A,R1 ;A=R1

.. J OVER ;jump I F A =0
Conditional Z\
OVER:

Jumps

Can be used only for register A,
not any other register
Determine if R5 contains the value 0. If so, put 55H in it.

MOV A,R5 ;copy R5 to A
JNZ NEXT ;jump 1If A 1s not zero
MOV R5,#55H

NEXT:

a (cont)
LOOP AND INC label ;jump if no carry, CY=0

JUMP » If CY = 0, the CPU starts to fetch and execute
INSTRUCTIONS instruction from the address of the label
> If CY =1, it will not jJump but will execute the next
Conditional instruction below JNC
Jumps Find the sum of the values 79H, F5H, E2H. Put the sum in registers
: RO (low byte) and R5 (high byte).
(cont) MOV R5,#0
MOV A,#0 ;A=0
MOV R5; .clear R5
ADD A,#79H ;A=0+79H=79H
; JNC N 1 ;1T CY=0, add next number
; INC R5 :1Ff CY=1, increment R5
N 1: ADD A,#OF5H ;A=79+F5=6E and CY=1
JNC N _ 2 ;jump 1 CY=0
INC R5 ;1T CY=1,1ncrement R5 (R5=1)
N 2: ADD A,#OE2H ;A=6E+E2=50 and CY=1
JNC OVER ;Jump 1T CY=0
INC R5 ;1T CY=1, increment 5
OVER: MOV RO,A ;now RO=50H, and R5=02

LOOP AND
JUMP
INSTRUCTIONS

Conditional
Jumps
(cont’)

8051 conditional jump instructions

Instructions Actions

JZ JumpifA =20

JNZ Jump if A # 0

DJINZ Decrement and Jump if A # 0
CJINE A,byte Jump if A # byte

CJNE reg,#data Jump if byte # #data

JC Jump if CY = 1

JNC Jump ifCY =0

JB Jump if bit = 1

JNB Jump if bit = 0

JBC Jump if bit = 1 and clear bit

o All conditional jumps are short jumps

» The address of the target must within
-128 to +127 bytes of the contents of PC

a The unconditional jump is a jump in
LOOP AND which control is transferred
JUMP unconditionally to the target location

Lavp (long jump)

Unconditional » 3-byte Instruction
Jumps = First byte is the opcode

»= Second and third bytes represent the 16-bit
target address

— Any memory location from 0000 to FFFFH

savp (short jump)

» 2-byte instruction
= First byte is the opcode
»= Second byte is the relative target address

— 00 to FFH (forward +127 and backward
-128 bytes from the current PC)

INSTRUCTIONS

o To calculate the target address of a

LOOP AND :
short jump (sawP, JINC, JZ, DINZ, etc.)

JUMP

INSTRUCTIONS > The second byte is added to the PC of the
Instruction immediately below the jump
e:INEUNEE o |f the target address is more than -128

Short Jump to +127 bytes from the address below
Address

the short jump Instruction

» The assembler will generate an error
stating the jump is out of range

LOOP AND
JUMP
INSTRUCTIONS

Calculating
Short Jump
Address

(cont’)

Line PC
01 0000

02 0000
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

Opcode

Mnemonic Operand
ORG 0000

MOV RO,#0
MOV A,#55H
JZ NEXT
INC RO

INC A

INC A

ADD A,#/7H
JNC OVER
CLR A

MOV RO,A
MOV R1,A
MOV R2,A
MOV R3,A
ADD A,R3
JNC AGAIN
SIJMP HERE
END

S
o Call instruction is used to call subroutine

» Subroutines are often used to perform tasks
that need to be performed frequently

» This makes a program more structured in
addition to saving memory space

LcALL (long call)

» 3-byte Iinstruction
= First byte is the opcode

= Second and third bytes are used for address of
target subroutine

— Subroutine is located anywhere within 64K
byte address space

ACALL (absolute call)

» 2-byte instruction
» 11 bits are used for address within 2K-byte range

CALL
INSTRUCTIONS

Hossein
Sticky Note
up to here
88.07.18

a2 When a subroutine is called, control Is

CALL _
INSTRUCTIONS transferred to that subroutine, the
Processor
LCALL » Saves on the stack the the address of the

Instruction immediately below the LCALL
» Begins to fetch instructions form the new
location
o After finishing execution of the
subroutine

> The instruction RET transfers control back
to the caller

= Every subroutine needs RET as the last
Instruction

;load A with 55H
CALL ;send 55H to port 1

INSTRUCTIONS ;time delay

;load A with AA (iIn hex)
;send AAH to port 1

LCALL
(cont’)

;keep doing this indefinitely
Upon executing “LCALL DELAY”,
the address of instruction below it,

The counter R5 is set to
FFH; so loop is repeated
255 times.

“MOV A,#OAAH” is pushed onto
stack, and the 8051 starts to execute

at 300H.

;—————————— this 1s delay subroutine ---————————-
ORG 300H ;put DELAY at address 300H
DELAY: MOV R5,#0FFH ;R5=255 (FF in hex), counter
DINZ R5,AGAIN ;stay here until R5 become 0
;return to caller (when R5 =0)

When R5 becomes 0, control falls to the

The amount of time delay depends RET which pops the address from the stack

into the PC and resumes executing the

he f f th 1
on the frequency of the 805 instructions after the CALL.

001 0000 ORG O
002 0000 7455 BACK: MOV A,#55H ;load A with 55H

CALL 003 0002 F590 MOV P1,A -send 55H to pl
004 0004 120300 LCALL DELAY ;time delay
INSTRUCTIONS T4AA MOV A,#OAAH ;load A with AAH
F590 MOV P1,A ;send AAH to pl
CALL 120300 LCALL DELAY
: 80F0 SIJMP BACK ;keep doing this
Instruction and
;——————— this 1s the delay subroutine----—-—-
Stack ORG 300H
DELAY:
7DFF MOV R5,#0FFH ;R5=255
DDFE AGAIN: DINZ R5,AGAIN ;stay here
22 RET ;return to caller
END ;end of asm fTile

Stack frame after the first LCALL

Low byte goes first

and high byte is last

SP =09

CALL
INSTRUCTIONS

Use PUSH/POP
In Subroutine

Normally, the
number of PUSH
and POP

Instructions must

always match in any

called subroutine

0000

0000 7455
0002 F590
0004 7C99
0006 7D67
0008 120300
000B 74AA
000D F590
OOOF 120300
0012 80EC
this

0014 ;;---—-—--

0300
0300 CO04
0302 CO005

0306 7DFF NEXN

AGAIN

0308 DDFE

ORG O

BACK: MOV A,#55H ;load A with 55H
MOV P1,A ;send 55H to pl
MOV R4 ,#99H
MOV R5,#67H
LCALL DELAY ;time delay
MOV A,#0AAH ;load A with AA
MOV P1,A ;send AAH to pl
LCALL DELAY
SIJMP BACK ;keeping doing

DELAY:

R4, #0FFH; R4=FFH
MOV R5,#0FFH;R5=FFH
DINZ R5,AGAIN

030A DCFA R4 ,NEXT
030C D005 ;POP 1nto R5
O30E D004 :POP into R4
031~—=< - = fer
After first LCALL After PUSH 4 After PUSH 5 e
OB R5
0A 99 R4 R4
0]¢] PCH 00 PCH PCH
08 PCL OB PCL PCL

;MAIN program calling subroutines
ORG O .
CALL MAIN: LCALL SUBR 1 It is common to hdave one
LCALL SUBR_2 main program and many
INSTRUCTIONS LCALL SUBR_3 subroutines that are called
from the main program
- HERE: SJIMP HERE
Calling SN end of MAIN
Subroutines SUBR 1 |
o This allows you to make
RET each subroutine into a
S end of subroutinel B EIEICHnlelolV][:
- Each module can be
SUBR_2 tested separately and then
RET brought together with
J——————————— end of subroutine2 [RUEURYULCCUY
- In a large program, the
SUBR_3: ... module can be assigned to
RET different programmers
s ——————————-— end of subroutine3
END ;end of the asm file

CALL
INSTRUCTIONS

ACALL

o The only difference between ACALL
and LCALL is
» The target address for LCALL can be
anywhere within the 64K byte address
» The target address of ACALL must be
within a 2K-byte range

o The use of ACALL instead of LCALL

can save a number of bytes of
program ROM space

ORG O
CALL BACK: MOV A,#55H ;load A with 55H
MOV P1,A ;send 55H to port 1
INSTRUCTIONS LCALL DELAY -time delay
MOV A,#0AAH ;load A with AA (in hex)
MOV P1,A ;send AAH to port 1
ACALL LCALL DELAY
(cont’) SIMP BACK ;keep doing this 1ndefinitely
END ;end of asm file

A rewritten program which is more efficiently

ORG O
MOV A,#55H ;load A with 55H
BACK: MOV P1,A ;send 55H to port 1
ACALL DELAY ;time delay
CPL A ;complement reg A
SIMP BACK ;keep doing this indefinitely
END ;end of asm fTile

TIME DELAY
FOR VARIOUS
8051 CHIPS

o CPU executing an instruction takes a
certain number of clock cycles

» These are referred as to as /machine cycles
o The length of machine cycle depends

on the frequency of the crystal
oscillator connected to 8051

o In original 8051, one machine cycle
lasts 12 oscillator periods

Find the period of the machine cycle for 11.0592 MHz crystal
frequency

Solution:
11.0592/12 = 921_.6 kHz;

machine cycle 1s 1/921.6 kHz = 1.085us

For 8051 system of 11.0592 MHz, find how long it takes to execute

TIME DELAY each instruction.
(a) MOV R3,#55 (b) DEC R3 (c) DJINZ R2 target
FOR VARIOUS (d) LIMP (e) SIMP (F) NOP (g) MUL AB

8051 CHIPS

(cont’) Solution:
Machine cycles Time to execute
(a) 1 1x1.085uyus = 1.085us
(b) 1 1x1.085us = 1.085us
(o) 2 2x1.085us = 2.17us
(d) 2 2x1.085us = 2.17us
(e) 2 2x1.085us = 2.17us
(P 1 1x1.085us = 1.085us
(9) 4 4x1.085us = 4.34us

Find the size of the delay in following program, if the crystal

TIME DELAY frequency is 11.0592MHz.
FOR VARIOUS

8051 CHIPS MOV A,#55H
AGAIN: MOV P1,A

ACALL DELAY

Delay CPL A

Calculation SIMP AGAIN A simple way to short jump
;——-time delay----—--- to itself in order to keep the
DELAY: MOV R3,#200 microcontroller busy
HERE: DJNZ R3,HERE HERE: SJMP HERE

RET We can use the following:
SIMP $
Solution:
Machine cycle

DELAY: MOV R3,#200 1
HERE: DJNZ R3,HERE 2

RET 2
Therefore, [(200x2)+1+2]x1.085uys = 436.255us.

TIME DELAY
FOR VARIOUS
8051 CHIPS

Increasing
Delay Using
NOP

Find the size of the delay in following program, if the crystal
frequency is 11.0592MHz.

Machine Cycle

DELAY: MOV R3,#250
HERE: NOP
NOP
NOP
NOP

DINZ R3,HERE
RET

NNRRRRPR

Solution:
The time delay inside HERE loop is

[250(1+1+1+1+2)]x1.085us = 1627.5usS.
Adding the two instructions outside loop we

have 1627.5ys + 3 x 1.085us = 1630.755us

TIME DELAY
FOR VARIOUS
8051 CHIPS

Large Delay
Using Nested
Loop

Find the size of the delay in following program, if the crystal
frequency is 11.0592MHz.

Machine Cycle

DELAY: MOV R2,#200
AGAIN: MOV R3,#250
HERE: NOP
NOP

DINZ R34HERE

DINZ R2,AGAIN

RET

Notice in nested loop,
as in all other time
delay loops, the time
IS approximate since

we have ignored the
first and last
instructions in the
subroutine.

NNNR R PR

Solution:
For HERE loop, we have (4x250)x1.085,s=1085us.
For AGAIN loop repeats HERE loop 200 times, soO
we have 200x1085/s=217000us. But ‘“MOV
R3,#250” and “DJNZ R2,AGAIN” at the start and
end of the AGAIN loop add (3x200x1.805)=651us.
As a result we have 217000+651=217651us.

TIME DELAY
FOR VARIOUS
8051 CHIPS

Delay
Calculation for
Other 8051

o Two factors can affect the accuracy of
the delay

» Crystal frequency

* The duration of the clock period of the machine
cycle is a function of this crystal frequency

» 8051 design

* The original machine cycle duration was set at
12 clocks

= Advances in both IC technology and CPU
design in recent years have made the 1-clock
machine cycle a common feature

Clocks per machine cycle for various 8051 versions

Chip/Maker Clocks per Machine Cycle
AT89C51 Atmel 12
P89C54X2 Philips 6

DS5000 Dallas Semi
DS89C420/30/40/50 Dallas Semi 1

TIME DELAY
FOR VARIOUS
8051 CHIPS

Delay
Calculation for

Other 8051
(cont’)

Find the period of the machine cycle (MC) for various versions of
8051, if XTAL=11.0592 MHz.
(@) AT89C51 (b) P89C54X2 (c) DS5000 (d) DS89C4x0

Solution:
(a) 11.0592MHz/12 = 921.6kHz;

MC 1s 1/921.6kHz = 1.085uys = 1085ns
(b) 11.0592MHz/6 = 1.8432MHz;

MC 1s 1/1.8432MHz = 0.5425ys = 542ns
(c) 11.0592MHz/4 = 2.7648MHz ;

MC 1s 1/2.7648MHz = 0.36 s = 360ns
(d) 11.0592MHz/1 = 11.0592MHz;

MC 1s 1/11.0592MHz = 0.0904 s = 90ns

Instruction 8051 DSC89C4x0
MOV R3,#55 1 2
TIME DELAY DEC R3 1 1
FOR VARIOUS DJNZ R2 target 2 4
LIMP 2 3
8051 CHIPS [E=rs . -
NOP 1 1
Delay MUL AB 4 9
O UV VR (OI® [For an AT8051 and DSC89CAXO system of 11.0592 MHz, find how
Other 8051 long it takes to execute each instruction.
: (a) MOV R3,#55 (b) DEC R3 (c) DJINZ R2 target
(cont’) (d) LIMP (e) SINP (F) NOP (g) MUL AB
Solution:
AT8051 DS89C4x0
(a) 1X1085ns = 1085ns 2X90ns = 180ns
(b) 1X1085ns = 1085ns 1X90ns = 90ns
(c) 2X1085ns = 2170ns 4X90ns = 360ns
(d) 2X1085ns = 2170ns 3X90ns = 270ns
(e) 2X1085ns = 2170ns 3X90ns = 270ns
(f) 1X1085ns = 1085ns 1X90ns = 90ns
(g) 4X1085ns = 4340ns 9X90ns = 810ns

1/0 PORT
PROGRAMMING

The 8051 Microcontroller and Embedded
Systems. Using Assembly and C
Mazidi, Mazidi and McKinlay

Chung-Ping Young
ol

1/0
PROGRAMMING

A total of 32
pins are set
aside for the
four ports PO,

P1, P2, P3,
where each
port takes 8
pins

ND [
oo

8051 Pin Diagram

P3 <

P1 <

Provides

(P10
SN —
P1.2 [
P1.3 [
P1.4
P1.5
Pl.6]

_P1.7 [
RST [

(RXD) P3.0 C—

(TXD) P3.1 —

(-INTO) P3.2 —]

(INT1) P33
(TO) P3.4
(T1) P3.5
(-WR) P3.6]

\(—RD P37 =
XTAL2
XTALl [

+5V supply

voltage to

the chip
1 40 7 Vce
) 39 =1 P0.0 (ADO))
3 38 [——1 P0.1 (AD1)
4 37 =1 P0.2 (AD2)
5 36 =1 P0.3 (AD3)
6 35 =1 P0.4 (AD4) ~ PO
7 34 =1 P0.5 (ADS)
s 8091 3 3 rosans
9 32 [P0.7 (ADT
10 (8031) 31 [-EA/VPP

30 [/ ALE/PROG

5 (89420) 29 = -PSEN
3 28 1 P27 (A15)
" 27 [P26 (Al4)
15 26 [P25 (A13)
16 25 [—1 P24 (A12)
17 24 [P23 (A1) - P2
18 23 [P2.2 (A10)
19 22 [P2.1 (A9)
20 21 [P20 (A8)

1/0
PROGRAMMING

/0O Port Pins

39 P0.0(ADO)
38=1 PO. 1(AD1)
37 P0.2(AD2)
30=1 PO. RIVNDR))
35 PO. 4(AD4)
34 PO. Q(ADS)
38 meino
LTl = (R =
(INTO)P? 7 — 2(8031)
3 8= P2.7(A15)

27 P2.6(A14)
20 P2.5(A13)

=R 3(ALL)
B P22AAL)

213 P2 O(Ab)

a The four 8-bit 1/0 ports PO, P1, P2 and
P3 each uses 8 pins

o All the ports upon RESET are
configured as input, ready to be used
as input ports

» When the first O is written to a port, it
becomes an output

» To reconfigure it as an input, a 1 must be

sent to the port

= To use any of these ports as an input port, it
must be programmed

a It can be used for input or output,
each pin must be connected externally
to a 10K ohm pull-up resistor

Port O » This is due to the fact that PO is an open
drain, unlike P1, P2, and P3

= Open grainis a term used for MOS chips in the
same \vay that open collector is used for TTL

chips
TILLLLLLL
!

1/0
PROGRAMMING

39 P0.0(ADO)
38=1 P0.1(AD1)
373 P0.2(AD2)
,_3\6 =1 P0.3(AD3)
35 P0.4(AD4)
34 P0.5(ADS5)
%3 =1 P0.6(AD6)
8051 32 PO.7(AD7)

(8031)

PO.X

*—

1/0 The following code will continuously send out to port 0 the
alternating value 55H and AAH
PROGRAMMING BACK: MOV A, #55H

MOV PO,A

Port O ACALL DELAY

(cont’) MOV A, #0AAH
MOV PO, A
ACALL DELAY
SIMP BACK

P0.0(ADO)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)

(8031)

o In order to make port O an input, the
port must be programmed by writing 1
to all the bits

1/0
PROGRAMMING

Port O as Input

Port O is configured first as an input port by writing 1s to it, and then
data is received from that port and sent to P1

MOV A, #OFFH ;A=FF hex
MOV PO,A ;make PO an 1/p port
;by writing i1t all 1s
BACK: MOV A,PO ;get data from PO
MOV P1,A ;send 1t to port 1

SIJMP BACK ;keep doing i1t

PO.7(AD7)
(8031)

o Port O is also designated as ADO-AD7,
allowing it to be used for both address
and data

Dual Role of » When connecting an 8051/31 to an

external memory, port O provides both
address and data

1/0
PROGRAMMING

9 P0.0(ADO)
P0.1(AD1)

3 P0.2(AD2)
36 P0.3(AD3)
P0.4(AD4)

3 P0.5(AD5)
33 P0.6(AD6)
: PO.7(AD7)

o Port 1 can be used as input or output

1/0
PROGRAMMING » In contrast to port O, this port does not
need any pull-up resistors since it already
Port 1 has pull-up resistors internally
» Upon reset, port 1 is configured as an
Input port

The following code will continuously send out to port 0 the
alternating value 55H and AAH

MOV A, #55H

BACK: MOV P1,A
ACALL DELAY

8051 CPL A

(el SIJMP BACK

o—o

OO\ LN —

P1
P1
P1
Pl
P1
P1
P1
P1

oo

o To make port 1 an input port, it must
bo be programmed as such by writing 1
PROGRAMMING prograr y 9
to all its bits

Port 1 as Input

Port 1 is configured first as an input port by writing 1s to it, then data
Is received from that port and saved in R7 and R5

MOV A,#OFFH ;A=FF hex

MOV P1,A ;make P1 an input port
;by writing 1t all 1s
MOV A,P1 ;get data from P1
b MOV R7,A ;save it to in reg R7
Pl ACALL DELAY ;wait
ﬁ% 2 MOV A,P1 -another data from P1

8051 MOV R5,A ;save 1t to iIn reg R5
(8031)

O o Port 2 can be used as input or output

PROGRAMMING > Just like P1, port 2 does not need any pull-
up resistors since it already has pull-up
Port 2 resistors internally

» Upon reset, port 2 is configured as an input
port

8051
(8031)
27 PL.6(A14)
2608 P2S(ALY)
P2.3(ALT)

37 = 2(AlO)

o To make port 2 an input port, it must
be programmed as such by writing 1 to
all its bits

J el s o |In many 8051-based system, P2 is used
or Dual Role as simple 1/0

o In 8031-based systems, port 2 must be
used along with PO to provide the 16-
bit address for the external memory

» Port 2 Is also designated as A8 — Al5,
8051 Indicating its dual function

(8031) } i i
% = Ryl » Port O provides the lower 8 bits via A0 — A7

P2.3(A13)

P2.3(Al1)
23 P2.2(A10)
2 P2.1(A9)
P2.0(AB)

1/0
PROGRAMMING

e o Port 3 can be used as input or output

PROGRAMMING » Port 3 does not need any pull-up resistors

» Port 3 is configured as an input port upon
Port 3 reset, this is not the way it is most
commonly used

o Port 3 has the additional function of
providing some extremely important
signals

Port 3 P3 Bit Function Pin :
~ Serial
P3.0 RxD 10 ! / communications

P3.1 TxD 11 =r—
P3.2 INTO 12 | / interrupts
P3.3 INT1 13
P3.5 T1 15 g

—_ /_ Read/Write signals

WR 16 | of external memories

10
bl B14(8031) \ 2D 17

(NTDP3.3 EHI3 ~

<§§§§§ ﬁ —II systems based on 8751, 89C51 or
DS89C4x0, pins 3.6 and 3.7 are used for 1/0

while the rest of the pins in port 3 are

1/0
PROGRAMMING

J\.

J\.

J\\

normally used in the alternate function role

Write a program for the DS89C420 to toggle all the bits of PO, P1,
and P2 every 1/4 of a second

1/0 ORG O
si=Tolel=V\VIViIN[e1 | BACK: MOV A, #55H

MOV PO,A
MOV P1,A

Port 3 MOV P2,A
ACALL QSDELAY ;Quarter of a second
MOV A, #O0AAH
MOV PO,A
MOV P1,A
MOV P2,A
ACALL QSDELAY
SIJMP BACK

QSDELAY: De|ay
MOV ACMCHNN — 11 x 248 x 255 x 4 MC x 90 ns
H3: MOV R4 ,#248 EWIIRRIINTE
: H2: MOV R3,#255
R B14(8031) H1: DJN R3,H1 .4 MC for DS89C4x0

DINZ R4,H2
DINZ R5,H3
RET

END

1/0
PROGRAMMING

Different ways
of Accessing
Entire 8 Bits

The entire 8 bits of Port 1 are accessed

BACK: MOV
MOV
ACALL
MOV
MOV
ACALL

SIMP

A ,#55H
P1,A
DELAY
A,#0AAH
P1,A
DELAY
BACK

Rewrite the code in a more efficient manner by accessing the port
directly without going through the accumulator

BACK: MOV P1,#55H
ACALL DELAY
MOV P1,#0AAH
ACALL DELAY
SIMP BACK

Another way of doing the same thing
MOV A,#55H

BACK: MOV P1,A
ACALL DELAY
CPL A
SIMP BACK

0 Sometimes we need to access only 1

/0 BIT .
MANIPULATION TR bits of the port
BACK: CPL P1.2 ;complement P1.2
PROGRAMMING ACALL DELAY
SIJMP BACK
/0 Ports
and Bit ;another variation of the above program
- AGAIN: SETB P1.2 ;set only P1.2
Addressablllty ACALL DELAY
CLR P1.2 ;clear only P1.2
ACALL DELAY
SJIMP— AGAIN 755 P1 P2 P3 Port Bit
PO.0 P1.0 P2.0 P3.0 DO
PO.1 P1.1 P2.1 P3.1 D1
PO.2 P1.2 pP2.2 P3.2 D2
P0.3 P1.3 P2.3 P3.3 D3
P0.4 P1.4 P2.4 P3.4 D4
P0O.5 P1.5 P2.5 P3.5 D5
P0.6 P1.6 P2.6 P3.6 D6

PO.7 P1.7 P2.7 P3.7 D7

Example 4-2

Write the following programs.
Create a square wave of 50% duty cycle on bit 0 of port 1.

/0 BIT
MANIPULATION
PROGRAMMING

Solution:

The 50% duty cycle means that the “on” and “off” state (or the high
and low portion of the pulse) have the same length. Therefore,

1/0 Ports we toggle P1.0 with a time delay in between each state.
and Bit HERE: SETB P1.0 ;set to high bit 0 of port 1
- LCALL DELAY ;call the delay subroutine
Addressability CLR P1.0 ;P1.0=0

LCALL DELAY
SIJMP HERE ;keep doing it

Another way to write the above program is:

HERE: CPL P1.0 ;set to high bit O of port 1
LCALL DELAY ;call the delay subroutine
SIJMP HERE ;keep doing it

(cont’)

o Instructions that are used for signal-bit
operations are as following

Function

Set the bit (bit = 1)

Clear the bit (bit = 0)

Complement the bit (bit = NOT bit)

/0 BIT
MANIPULATION
PROGRAMMING Single-Bit Instructions

Instruction
/O Ports SETB bit
and Bit CLR bit
Addressability BT
(cont’) JB bit, target

Jump to target if bit = 1 (jump if bit)

JNB bit, target

Jump to target if bit = 0 (Jump if no bit)

JBC bit, target

Jump to target if bit = 1, clear bit
(Jump if bit, then clear)

o The JNB and JB instructions are widely

170 BIT used single-bit operations
MANIPULATION » They allow you to monitor a bit and make
PROGRAMMING a decision depending on whether it's 0 or 1

: » These two instructions can be used for any
Checking an bits of 1/0 ports 0, 1, 2, and 3
Input Bit = Port 3 is typically not used for any 1/0, either

single-bit or byte-wise

Instructions for Reading an Input Port

Mnemonic Examples Description

MOV A,PX MOV A,P2 Bring into A the data at P2 pins
JNB PX.Y,.. JNBP2.1,TARGET Jump if pin P2.1 is low

JB PX.Y,.. JB P1.3,TARGET Jump if pin P1.3 is high

MOV C,PX.Y MOV C,P2.4 Copy status of pin P2.4 to CY

Example 4-3

/0 BIT
Write a program to perform the following:
MANIPULATION (a) Keep monitoring the P1.2 bit until it becomes high
(b) When P1.2 becomes high, write value 45H to port 0
PROGRAMMING (c) Send a high-to-low (H-to-L) pulse to P2.3

: Solution:
CheCkmg_an SETB P1.2 ;make P1.2 an input
Input Bit MOV A, #45H - A=45H
(cont’) AGAIN: IJNB P1.2,AGAIN ; get out when P1.2=1
MOV PO,A ;Issue A to PO
SETB P2.3 ;make P2.3 high

CLR P2.3 -make P2.3 low for H-to-L

/0 BIT
MANIPULATION
PROGRAMMING

Checking an
Input Bit
(cont’)

Example 4-4

Assume that bit P2.3 is an input and represents the condition of an
oven. If it goes high, it means that the oven is hot. Monitor the bit
continuously. Whenever it goes high, send a high-to-low pulse to port
P1.5to turn on a buzzer.

Solution:

HERE: JNB P2.3,HERE ;keep monitoring for high
SETB P1.5 ;set bit P1.5=1
CLR P1.5 ;make high-to-low

SJMP HERE ;keep repeating

/0 BIT
MANIPULATION
PROGRAMMING

Checking an
Input Bit
(cont’)

Example 4-5

A switch is connected to pin P1.7. Write a program to check the status
of SW and perform the following:
(a) If SW=0, send letter ‘N’ to P2
(b) If SW=1, send letter ‘Y’ to P2

Solution:
SETB P1.7 ;make P1.7 an i1nput
AGAIN: JB P1.2,0VER ;jump 1f P1.7=1
MOV P2,#”N’ ;SW=0, i1ssue “N” to P2
SIMP AGAIN ;keep monitoring
OVER: MOV P2,#°Y’ ;SW=1, i1ssue “Y” to P2
SIMP AGAIN ;keep monitoring

/0 BIT
MANIPULATION
PROGRAMMING

Reading Single
Bit into Carry
Flag

Example 4-6

A switch is connected to pin P1.7. Write a program to check the status
of SW and perform the following:

(a) If SW=0, send letter ‘N’ to P2

(b) If SW=1, send letter ‘Y’ to P2

Use the carry flag to check the switch status.

Solution:
SETB P1.7 ;make P1.7 an i1nput
AGAIN: MOV C,P1.2 ;read SW status 1nto CF
JC OVER ;jJump 1 SW=1
MOV P2,#°N’ ;SW=0, 1ssue “N” to P2
SIMP AGAIN ;keep monitoring

OVER: MOV P2,#’Y’ ;SW=1, i1ssue “Y” to P2
SIMP AGAIN ;keep monitoring

Example 4-7

A switch is connected to pin P1.0 and an LED to pin P2.7. Write a
program to get the status of the switch and send it to the LED

/0 BIT
MANIPULATION
PROGRAMMING

Solution:
_ _ SETB P1.7 ;make P1.7 an input
SCEGlORSIIlo N | AcAIN: MOV C,P1.0 -read SW status into CF

Bit into Carry MOV P2-7,C} ;send SW status to LED
|:|ag SIMP AGAIN ;keep repeating

(cont’) \
The instruction

‘MOV
P2.7,P1.0’is

wrong , since such
an instruction does
not exist

However ‘MOV
P2,P1’is avalid

instruction

o In reading a port

1/0 BIT > Some instructions read the status of port
MANIPULATION pins

PROGRAMMING » Others read the status of an internal port
latch

SEEGIMORLTME o Therefore, when reading ports there
Pins vs. Port are two possibilities:

Latch » Read the status of the input pin
» Read the internal latch of the output port
o Confusion between them is a major
source of errors in 8051 programming

» Especially where external hardware is
concerned

READING

INPUT PINS VS.

PORT LATCH

Reading Latch
for Output Port

o Some instructions read the contents of
an internal port latch instead of
reading the status of an external pin

» For example, look at the ANL P1,A
Instruction and the sequence of actions is
executed as follow

1. It reads the internal latch of the port and
brings that data into the CPU

2. This data is ANDed with the contents of
register A
3. The result is rewritten back to the port latch

4. The port pin data is changed and now has the
same value as port latch

a Read-Modify-Write

» The instructions read the port latch
normally read a value, perform an
operation then rewrite it back to the port
latch

READING
INPUT PINS VS.
PORT LATCH

Reading Latch
for Output Port

Instructions Reading a latch (Read-Modify-Write)

Mnemonics Example
(cont’) ANL PX ANL PL,A

ORL PX ORL P2,A

XRL PX XRL PO,A

JBC PX.Y,TARGET JBC P1.1,TARGET

CPL PX.Y CPL P1.2

INC PX INC P1

DEC PX DEC P2

DJNZ PX.Y,TARGET DJNZ P1,TARGET

MOV PX.Y,C MOV P1.2,C

CLR PX.Y CLR P2.3 Note: X is 0.1 2

SETB PX.Y SETB P2.3 or 3 for PO - P3

/0 BIT
MANIPULATION
PROGRAMMING

Read-modify-
write Feature

o The ports in 8051 can be accessed by
the Read-modify-write technique

» This feature saves many lines of code by
combining in a single instruction all three
actions
1. Reading the port
2. Modifying it
3. Writing to the port

MOV P1,#55H ;P1=01010101

AGAIN: XRL P1,#0FFH ;EX-OR P1 with 1111 1111
ACALL DELAY
SJMP BACK

ADDRESSING MODES

The 8051 Microcontroller and Embedded
Systems. Using Assembly and C
Mazidi, Mazidi and McKinlay

Chung-Ping Young
TRl

o The CPU can access data in various
ways, which are called addressing
modades

> Immediate

» Register

» Direct)
» Register indirect >F S
> Indexed

ADDRESSING
MODES

J

o The source operand Is a constant
IMMEDIATE

ADDRESSING » The immediate data must be preceded by
MODE the pound sign, “#”

» Can load information into any registers,
Including 16-bit DPTR register

= DPTR can also be accessed as two 8-bit
registers, the high byte DPH and low byte DPL

MOV A,#25H :load 25H Into A

MOV R4 ,#62 ;load 62 Into R4

MOV B,#40H :load 40H into B

MOV DPTR,#4521H ;DPTR=4512H

MOV DPL,#21H :This 1Is the same

MOV DPH,#45H -as above

;illegal!! Value > 65535 (FFFFH)
MOV DPTR,#68975

2 We can use EQU directive to access

IMMEDIATE Immediate data
ADDRESSING
MODE Count EQU 30
(cont’) MOV R4.#COUNT -RA=1EH
MOV DPTR.#MYDATA :DPTR=200H
ORG 200H
MYDATA: DB “America”

o We can also use immediate addressing
mode to send data to 8051 ports

MOV P1,#55H

REGISTER
ADDRESSING
MODE

o Use registers to hold the data to be
manipulated

MOV A,RO ;copy contents of RO into A
MOV R2,A ;copy contents of A Into R2
ADD A,R5 ;add contents of R5 to A
ADD A,R7 ;add contents of R7 to A
MOV R6,A ;save accumulator 1n R6

o The source and destination registers
must match in size
> MOV DPTR,A will give an error

MOV DPTR,#25F5H
MOV R7,DPL
MOV R6,DPH

o The movement of data between Rn
registers is not allowed
> MOV R4,R7 IS invalid

o It 1s most often used the direct
addressing mode to access RAM
locations 30 — 7FH

Direct » The entire 128 bytes of RAM can be

Addressing accessed Direct addressing mode

Mode > The register bank locations are accessed
by the register names

ACCESSING
MEMORY

MOV A,4/’ ;IS same as
MOV A,R4\\ ;which means copy R4 i1nto A

o Contrast this wath immediate

addressing mode

» There is no “#” sign Iin the operand

MOV RO,40H :;save content of 40H 1n RO
MOV 56H,A -save content of A 1n 56H

2 The SFR (Special Function Register)
can be accessed by their names or by
their addresses

ACCESSING
MEMORY

SFR Registers MOV OEOH,#55H ;is the same as
and Their MOV A,#55h ;load 55H into A

Addresses MOV OFOH,RO -is the same as
MOV B,RO ;copy RO 1nto B

2 The SFR registers have addresses
between 80H and FFH

» Not all the address space of 80 to FF Is
used by SFR

» The unused locations 80H to FFH are
reserved and must not be used by the
8051 programmer

Special Function Register (SFR) Addresses

Symbol Name Address
ACCESS | NG ACC* Accumulator OEOH
M EMORY B* B register OFOH
PSW* Program status word ODOH
SFR Reg Isters BE: Stack pointer 81H
and Their DPTR Data pointer 2 bytes
Addresses DPL Low byte 82H
(cont) DPH High byte 83H
PO* Port O 80H
P1* Port 1 90H
p2* Port 2 OAOH
P3* Port 3 0BOH
IP* Interrupt priority control OB8H

IE* Interrupt enable control OA8H

ACCESSING
MEMORY

SFR Registers
and Their

Addresses
(cont’)

Special Function Register (SFR) Addresses

Symbol Name Address
TMOD Timer/counter mode control 89H
TCON* Timer/counter control 88H
T2CON* Timer/counter 2 control 0C8H
T2MOD Timer/counter mode control OC9H
THO Timer/counter O high byte 8CH
TLO Timer/counter 0 low byte 8AH
TH1 Timer/counter 1 high byte 8DH
TL1 Timer/counter 1 low byte 8BH
TH2 Timer/counter 2 high byte OCDH
TL2 Timer/counter 2 low byte OCCH
RCAP2H T/C 2 capture register high byte OCBH
RCAP2L T/C 2 capture register low byte OCAH
SCON* Serial control 98H
SBUF Serial data buffer 99H
PCON Power ontrol 87H

* Bit addressable

ACCESSING
MEMORY

SFR Registers
and Their

Addresses
(cont’)

Example 5-1

Write code to send 55H to ports P1 and P2, using
(a) their names (b) their addresses

Solution :
(a) MOV A,#55H ;A=55H
MOV P1,A ;P1=55H
MOV P2,A ; P2=55H
(b) From Table 5-1, P1 address=80H; P2 address=A0H
MOV A,#55H ;A=55H
MOV 80H,A ;P1=55H

MOV OAOH, A ;P2=55H

ACCESSING
MEMORY

Stack and
Direct
Addressing
Mode

o Only direct addressing mode is allowed
for pushing or popping the stack
» PUSH A is invalid

» Pushing the accumulator onto the stack
must be coded as PUSH OEOH

Example 5-2

Show the code to push R5 and A onto the stack and then pop them
back them into R2 and B, where B = A and R2 = R5

Solution:

PUSH 05
PUSH OEOH
POP OFOH

POP 02

;push R5 onto stack

;push register A onto stack
;pop top of stack Into B
;how register B = register A
;pop top of stack Into R2
-now R2=R6

ACCESSING
MEMORY

Register
Indirect
Addressing
Mode

o A register iIs used as a pointer to the
data

» Only register RO and R1 are used for this
purpose

» R2 — R7 cannot be used to hold the
address of an operand located in RAM
o When RO and R1 hold the addresses of
RAM locations, they must be preceded
by the “@” sign

MOV A,@RO ;move contents of RAM whose
;address 1s held by RO 1nto A

MOV @R1,B ;move contents of B into RAM
;whose address i1s held by R1

ACCESSING
MEMORY

Register
Indirect
Addressing
Mode

(cont’)

Example 5-3

Write a program to copy the value 55H into RAM memory locations
40H to 41H using

(a) direct addressing mode, (b) register indirect addressing mode
without a loop, and (c) with a loop

Solution:

(@)
MOV A,#55H ;load A with value 55H
MOV 40H,A ;copy A to RAM location 40H
MOV 41H_A ;copy A to RAM location 41H

(b)
MOV A,#55H ;load A with value 55H
MOV RO,#40H ;load the pointer. R0=40H
MOV @RO,A ;copy A to RAM RO points to
INC RO ;increment pointer. Now RO=41h
MOV @RO,A ;copy A to RAM RO points to

()
MOV A,#55H ;A=55H
MOV RO, #40H ;load pointer.R0=40H,
MOV R2,#02 ;load counter, R2=3
AGAIN: MOV @RO,A ;copy 55 to RAM RO points to
INC RO ;increment RO pointer
DINZ R2,AGAIN ;loop until counter = zero

o The advantage Is that it makes

AEACEES&T(G accessing data dynamic rather than
static as In direct addressing mode
Register » Looping is not possible in direct
Indirect addressing mode
Addressing Example 5-4
Mode Write a program to clear 16 RAM locations starting at RAM address
(cont’) 60H
Solution:
CLR A :A=0

MOV R1,#60H ;load pointer. R1=60H
MOV R7,#16 ;load counter, R7=16
AGAIN: MOV @R1,A ;clear RAM R1 points to
INC R1 ;increment R1 pointer
DINZ R7,AGAIN ;loop until counter=zero

ACCESSING
MEMORY

Register
Indirect
Addressing
Mode

(cont’)

Example 5-5

Write a program to copy a block of 10 bytes of data from 35H to 60H

Solution:

MOV RO,#35H ;source pointer
MOV R1,#60H ;destination pointer
MOV R3,#10 ;counter
BACK: MOV A,@RO ;get a byte from source
MOV @R1,A ;Ccopy 1t to destination
INC RO ; Increment source pointer
INC R1 ;Increment destination pointer
DINZ R3,BACK ;keep doing for ten bytes

ACCESSING
MEMORY

Register
Indirect
Addressing
Mode

(cont’)

o RO and R1 are the only registers that
can be used for pointers in register
Indirect addressing mode

a Since RO and R1 are 8 bits wide, their
use Is limited to access any
Information in the internal RAM

o Whether accessing externally
connected RAM or on-chip ROM, we
need 16-bit pointer
» In such case, the DPTR reqgister is used

o Indexed addressing mode Is widely
used In accessing data elements of
look-up table entries located In the

Indexed program ROM

QECIEESIUCEN | The instruction used for this purpose Is

Mode and MOVC A,@A+DPTR
On-chip ROM

ACCESSING
MEMORY

> Use Instruction MOVC, “C” means code

> The contents of A are added to the 16-bit
register DPTR to form the 16-bit address
of the needed data

Access

Example 5-6

ACCESSING In this program, assume that the word “USA” is burned into ROM

locations starting at 200H. And that the program is burned into ROM

MEMORY locations starting at 0. Analyze how the program works and state

Indexed Solution:

~rhim LJIr Y\nin

ALLED>SS | /

DPTR=201H, A=0 /
= - |
DPTR=201H, A=53H

HERE ;,stay here
;Data 1s burned Into C space starting at 200H

Here:

ORG

DPTR=200H, A=0 MOV
I;AAAIA o~ KCLR

DIR[0 VISl — —MOVC A,@A+DPTR ;get the char from code space

MOV
SJIMP

ORG
END

where “USA” is stored after this program is run.

OOO0OOH ;burn 1nto ROM starting at O
DPTR,#200H ;DPTR=200H look-up table addr
A ;clear A(A=0)

RO,A ;save 1t iIn RO

DPTR .DPTR=201 point to next char
A ;C ACA=0) -
A,@A+DPTR ;get the next char RO=55H
R1,A ;save 1t 1n R1

DPTR :DPTR:202 point to next char
A ;C A(A=0) -
A,@A+DPTR -get the next char Al
R2,A ;save it in R2

00H R2=41H

MYDATA:DB “USA”

;end of program

ACCESSING
MEMORY

Look-up Table
(cont’)

o The look-up table allows access to
elements of a frequently used table
with minimum operations

Example 5-8
Write a program to get the x value from P1 and send x? to P2,
continuously

Solution:
ORG O
MOV DPTR,#300H -LOAD TABLE ADDRESS
MOV A,#OFFH - A=FF
MOV P1,A :CONFIGURE P1 INPUT PORT
BACK:MOV A,P1 :GET X
MOV A,@A+DPTR ;GET X SQAURE FROM TABLE
MOV P2,A -ISSUE IT TO P2
SIMP BACK :KEEP DOING IT
ORG 300H
XSQR_TABLE:

"DB 0,1,4,9,16,25,36,49,64,81
END

ACCESSING
MEMORY

Indexed
Addressing
Mode and

MOVX

o In many applications, the size of
program code does not leave any
room to share the 64K-byte code

space with data

» The 8051 has another 64K bytes of
memory space set aside exclusively for

data storage

* This data memory space is referred to as
external memory and it is accessed only by the

MOVX instruction

o The 8051 has a total of 128K bytes of

memory space
» 64K bytes of code and 64K bytes of data
» The data space cannot be shared between
code and data

o In many applications we use RAM
locations 30 — 7FH as scratch pad
» We use RO - R7 of bank O

RAM Locations » Leave addresses 8 — 1FH for stack usage

30 - 7FH as > If we need more registers, we simply use
Scratch Pad RAM locations 30 — 7FH

ACCESSING
MEMORY

Example 5-10

Write a program to toggle P1 a total of 200 times. Use RAM
location 32H to hold your counter value instead of registers RO —
R7

Solution:
MOV P1,#55H :P1=55H

MOV 32H,#200 ;load counter value

-into RAM loc 32H

LOP1: CPL P1 ;toggle P1
ACALL DELAY
DINZ 32H,LOP1 ;repeat 200 times

2 Many microprocessors allow program
to access registers and 1/0 ports in
byte size only

» However, in many applications we need to
check a single bit

a2 One unique and powerful feature of
the 8051 is single-bit operation

» Single-bit instructions allow the
programmer to set, clear, move, and
complement individual bits of a port,
memory, or register

» It Is registers, RAM, and 1/0 ports that
need to be bit-addressable

= ROM, holding program code for execution, is
not bit-addressable

BIT
ADDRESSES

BIT
ADDRESSES

Bit-
Addressable
RAM

o The bit-addressable RAM location are
20H to 2FH

» These 16 bytes provide 128 bits of RAM
bit-addressabillity, since 16 x 8 = 128

= 0to 127 (in decimal) or 00 to 7FH

» The first byte of internal RAM location 20H
has bit address O to 7H

» The last byte of 2FH has bit address 78H
to 7FH

o Internal RAM locations 20-2FH are
both byte-addressable and bit-
addressable

» Bit address 00-7FH belong to RAM byte
addresses 20-2FH

» Bit address 80-F7H belong to SFR PO,
P1, ...

BIT
ADDRESSES

Bit-
Addressable

RAM
(cont’)

Bit-addressable
locations

Byte address

7F

30

2F
2E
2D
2C
2B
2A
29
28
27
26
25
24
23
22
21
20

1F
18

17
10

OF
08

07
00

General purpose RAM

Bank 3

Bank 2

Bank 1

Default register bank for RO-R7

BIT
ADDRESSES

Bit-
Addressable

RAM
(cont’)

Example 5-11

Find out to which by each of the following bits belongs. Give the

address of the RAM byte in hex
(a) SETB 42H, (b) CLR 67H, (c) CLR OFH

(d) SETB 28H, (e) CLR 12, (f) SETB 05

bDr D6 D5 D4 D3 D2 D1

Solution:

(a) D2 of RAM location 28H
(b) D7 of RAM location 2CH
(c) D7 of RAM location 21H
(d) DO of RAM location 25H
(e) D4 of RAM location 21H

(f) D5 of RAM location 20H

DO

BIT
ADDRESSES

Bit-
Addressable

RAM
(cont’)

o To avoid confusion regarding the
addresses 00 — 7FH

» The 128 bytes of RAM have the byte
addresses of 00 — 7FH can be accessed In
byte size using various addressing modes

= Direct and register-indirect

» The 16 bytes of RAM locations 20 — 2FH
have bit address of 00 — 7FH

= We can use only the single-bit instructions and
these instructions use only direct addressing
mode

BIT
ADDRESSES

Bit-
Addressable

RAM
(cont’)

o Instructions that are used for signal-bit
operations are as following

Single-Bit Instructions

Instruction Function

SETB bit Set the bit (bit = 1)

CLR bit Clear the bit (bit = 0)

CPL bit Complement the bit (bit = NOT bit)

JB bit, target Jump to target if bit = 1 (jump if bit)
JNB bit, target Jump to target if bit = 0 (jump if no bit)
JBC bit, target Jump to target if bit = 1, clear bit

(Jump if bit, then clear)

BIT
ADDRESSES

/0 Port
Bit Addresses

o While all of the SFR registers are byte-
addressable, some of them are also bit-
addressable

> The PO — P3 are bit addressable

o We can access either the entire 8 bits
or any single bit of 1/0 ports PO, P1, P2,
and P3 without altering the rest

o When accessing a port in a single-bit
manner, we use the syntax SETB X.Y
» X IS the port number PO, P1, P2, or P3

> Y IS the desired bit number from 0 to 7 for
data bits DO to D7

» ex. SETB P1.5 sets bit 5 of port 1 high

o Notice that when code such as

BIT SETB P1.0 is assembled, it becomes
ADDRESSES SETB 90H

» The bit address for 1/0 ports
1/0 Port = PO are 80H to 87H
Bit Addresses = P1 are 90H to 97H
(cont’) = P2 are AOH to A7H
= P3 are BOH to B7H

Single-Bit Addressability of Ports

PO P1 P2 P3 Port Bit
P0.0 (80) P1.0(90) P2.0 (A0) P3.0 (BO) DO
PO.1 P1.1 P2.1 P3.1 D1
PO.2 P1.2 P2.2 P3.2 D2
PO.3 P1.3 P2.3 P3.3 D3
P0.4 P1.4 P2.4 P3.4 D4
PO.5 P1.5 P2.5 P3.5 D5
P0.6 P1.6 P2.6 P3.6 D6

PO.7 (87) P1.7(97) P2.7 (A7) P3.7 (B7) D7

BIT
ADDRESSES

/0 Port
Bit Addresses
(cont’)

SFR RAM Address (Byte and Bit)

Byte
address

FF
FO

EO

DO

B8

BO

A8

A0

99

Bit address

F4 F3 F2

BC BB BA B9 B8

B4 B3 B2 B1 BO

AE AD AC AB AA A9 A8

A6 A5 A4 A3 A2 Al AO

not bit addressable

ACC

PSW

IP

P3

IE

P2

SBUF

8D
8C
8B
8A
89
88
87

not
not
not
not

not

Bit address

bit
bit
bit
bit
bit

9F 9E 9D 9C 9B 9A 99 98

97 96 95 94 93 92 91 90

addressable
addressable
addressable
addressable

addressable

8F 8E 8D 8C 8B 8A 89 88

not bit addressable

not bit addressable

not bit addressable

not bit addressable

Special Function Register

87 86 85 84 83 82 81 80

Bit addresses 80 — F7H
belong to SFR of PO,

TCON, P1, SCON, P2, etc

SCON

P1

TH1
THO
TL1
TLO
TMOD
TCON
PCON

DPH
DPL
SP
PO

o Only registers A, B, PSW, IP, IE, ACC,
BIT SCON, and TCON are bit-addressable
ADDRESSES > While all 1/0 ports are bit-addressable

neqi o In PSW register, two bits are set aside
egisters . :

Bit- for the selection of the register banks
Addressability » Upon RESET, bank O is selected

» We can select any other banks using the
bit-addressabllity of the PSW

CY AC —- RS1 RSO oV

RS1 RSO Register Bank Address

0 0 0 OOH - O7H
0 1 1 08H - OFH
1 0 2 10H - 17H
1 1 3 18H - 1FH

BIT
ADDRESSES

Registers
Bit-
Addressabllity
(cont’)

Example 5-13
Write a program to save the accumulator in R7 of bank 2.

Solution:

CLR PSW.3
SETB PSW.4
MOV R7,A

Example 5-14

While there are instructions such as JNC and JC to check the carry flag
bit (CY), there are no such instructions for the overflow flag bit (OV).
How would you write code to check OV?

Solution:

JB PSW.2,TARGET :jump if OvV=1

Example 5-18
While a program to save the status of bit P1.7 on RAM address bit 05.
Solution:

MOV C,P1.7

MOV 05,C

Example 5-15

BIT Write a program to see if the RAM location 37H contains an even
ADDRESSES value. If so, send it to P2. If not, make it even and then send it to P2.
Solution:
: MOV A,37H ;load RAM 37H 1nto ACC
Registers INB ACC.0,YES :if DO of ACC 0? If so jump
Bit- INC A ;It’s odd, make 1t even
YES: MOV P2,A ;send 1t to P2

Addressabllity
(cont’) Example 5-17

The status of bits P1.2 and P1.3 of 1/O port P1 must be saved before
they are changed. Write a program to save the status of P1.2 in bit
location 06 and the status of P1.3 in bit location 07

Solution:
CLR 06 ;clear bit addr. 06
CLR 07 ;clear bit addr. 07
JNB P1.2,0VER ;check P1.2, if O then jump
SETB 06 1F P1.2=1,set bit 06 to 1
OVER: JNB P1.3,NEXT ;check P1.3, 1f O then jump
SETB 07 ;1T P1.3=1,set bit 07 to 1

NEXT:

BIT
ADDRESSES

Using BIT

o The BIT directive Is a widely used
directive to assign the bit-addressable
/0 and RAM locations

» Allow a program to assign the 1/0 or RAM
bit at the beginning of the program,
making it easier to modify them

Example 5-22

A switch is connected to pin P1.7 and an LED to pin P2.0. Write a
program to get the status of the switch and send it to the LED.

Solution:
LED BIT P1.7
SwW BIT P2.0

HERE: MOV C,SwW
MOV LED,C
SIMP HERE

;assign bit

;assign bit

;get the bit from the port
;send the bit to the port
;repeat forever

Example 5-20

Bl Assume that bit P2.3 is an input and represents the condition of an
ADDRESSES oven. If it goes high, it means that the oven is hot. Monitor the bit
continuously. Whenever it goes high, send a high-to-low pulse to port
P1.5to turn on a buzzer.

Using BIT
(cont’)

Solution:

OVEN_HOT BIT P2.3

BUZZER BIT P1.5

HERE: JNB OVEN_HOT,HERE ;keep monitoring
ACALL DELAY
CPL BUZZER ;sound the buzzer
ACALL DELAY
SIMP HERE

BIT
ADDRESSES

Using EQU

0 Use the EQU to assign addresses

» Defined by names, like P1.7 or P2
» Defined by addresses, like 97H or OAOH

Example 5-24

A switch is connected to pin P1.7. Write a program to check the status
of the switch and make the following decision.

(@) If SW =0, send “0” to P2

(b) If SW =1, send “1"“ to P2

Solution: SW EQU 97H

Sw EQU P1.7 MYDATA EQU OAOH
MYDATA EQU P2
HERE: MOV C,Sw

JC OVER
MOV MYDATA,#70”
SIMP HERE

OVER: MOV MYDATA,#71”
SIMP HERE

END

TrA 198 I The 8052 has another 128 bytes of on-
BYTE ON-CHIP chip RAM with addresses 80 — FFH

RAM IN 8052 > It is often called upper memory

= Use indirect addressing mode, which uses RO
and R1 registers as pointers with values of 80H
or higher

— MOV @RO, A and MOV @R1, A

» The same address space assigned to the
SFRs
» Use direct addressing mode
— MOV 90H, #55H is the same as
MOV P1, #55H

Example 5-27
EXTRA 128 P | |
Assume that the on-chip ROM has a message. Write a program to
BYTE ON-CHIP copy it from code space into the upper memory space starting at
RAM IN 8052 g%dress 80H. Also, as you place a byte in upper RAM, give a copy to
(cont’)
Solution:
ORG 0
MOV DPTR ,#MYDATA
MOV R1,#80H ;access the upper memory
Bl: CLR A
MOVC A,@A+DPTR ;copy from code ROM
MOV OR1,A ;store 1In upper memory
MOV PO,A ;give a copy to PO
JZ EXIT ;exit 1T last byte
INC DPTR ;increment DPTR
INC R1 ;increment R1
SIMP Bl ;repeat until last byte
EXIT: SJMP $;stay here when finished
ORG 300H
MYDATA: DB “The Promise of World Peace”,0
END

ARITHMETIC & LOGIC
INSTRUCTIONS AND
PROGRAMS

The 8051 Microcontroller and Embedded
Systems. Using Assembly and C
Mazidi, Mazidi and McKinlay

Chung-Ping Young
Tl

ARITHMETIC
INSTRUCTIONS

Addition of
Unsigned
Numbers

ADD A, source

A = A + source

o The instruction ADD is used to add two
operands
» Destination operand is always in register A

» Source operand can be a register,
Immediate data, or in memory

» Memory-to-memory arithmetic operations
are never allowed in 8051 Assembly
language

Show how the flag register is affected by the following instruction.
MOV A,#OF5H ;A=F5 hex

CY =1, since there is a

. PF =1, because the number
Solution: F5H 1111 0101 of 1s is zero (an even
number), PF is set to 1.
+ _0OBH + 0000 1011 AC =1, since there is a
100H 0000 0000 carry from D3 to D4

Assume that RAM locations 40 — 44H have the following values.
IR B\ \SE (O8N | \Write a program to find the sum of the values. At the end of the
INSTRUCTIONS jraeleit register A should contain the low byte and R7 the high byte.

40 = (7D)
41 = (EB)
Addition of 42 = (C5)
Individual 43 = (5B)
44 = (30)
Bytes
Solution:
MOV RO,#40H ;load pointer
MOV R2,#5 ;load counter
CLR A ;A=0
MOV R7,A .clear R7
AGAIN: ADD A,@RO ;add the byte ptr to by RO
JNC NEXT ;1T CY=0 don’t add carry
INC R7 ;keep track of carry
NEXT: INC RO ;Increment pointer

DINZ R2,AGAIN ;repeat until R2 i1s zero

ARITHMETIC
INSTRUCTIONS

ADDC and
Addition of 16-
Bit Numbers

o When adding two 16-bit data operands,

the propagation of a carry from lower
byte to higher byte is concerned
1— When the first byte is added

3C E7 (E7+8D=74, CY=1).
+ 3B 8D The carry is propagated to the
78 74 higher byte, which result in 3C

+ 3B + 1 =78 (all in hex)

Write a program to add two 16-bit numbers. Place the sum in R7 and
R6; R6 should have the lower byte.

Solution:
CLR C ;make CY=0
MOV A, #0E7H ;load the low byte now A=E7H
ADD A, #8DH ;add the low byte
MOV R6, A ;save the low byte sum 1n R6
MOV A, #3CH ;load the high byte
ADDC A, #3BH ;add with the carry
MOV R7, A ;save the high byte sum

o The binary representation of the digits
ARITHMETIC 0 to 9 is called BCD (Binary Coded

S 0epfel] Decimal) S D

» Unpacked BCD 0 0000

0001
BCD Number = |n unpacked BCD, the lower 4

0010
System bits of the number represent the

0011
BCD number, and the rest of the

0100
bits are 0

0101
= Ex. 00001001 and 00000101 are

0110
unpacked BCD for 9 and 5

O O|IN([O|O|AR|WIN|PF

0111
> Packed BCD

1000
1001
= |In packed BCD, a single byte has
two BCD number in it, one in the
lower 4 bits, and one in the
upper 4 bits

= Ex. 0101 1001 is packed BCD for
59H

ISRt VaElel 2 Adding two BCD numbers must give a
NS:leglel\y| BCD result

Adding these two

numbers gives

Unpacked and MO\/ A, #17H 0011 1111B (3FH),
Which is not BCD!
Packed BCD ADD A, #28H

The result above should have been 17 + 28 = 45 (0100 0101).

To correct this problem, the programmer must add 6 (0110) to the
low digit: 3F + 06 = 45H.

DA A ;decimal adjust for addition

ACULSR(O o The DA instruction is provided to
INSTRUCTIONS correct the aforementioned problem
associlated with BCD addition

> The DA Instruction will add 6 to the lower
nibble or higher nibble if need

DA Instruction

Example: 6CH

MOV A,HATH ;A=47H Ffirst BCD operand
MOV B j#25H ,B=25H second BCD operand
ADD A,B ;hex(binary) addition(A=6CH)

/{DA A ;adjust for BCD addition

\ A=72H
JAY (i)
DA works O|y

after an ADD. The “DA” instruction works only on A. In other word, while the source
but not after INC can be an operand of any addressing mode, the destination must be in
register A in order for DA to work.

o Summary of DA instruction

ARITHMETIC > After an ADD or ADDC instruction
INSTRUCTIONS

1. If the lower nibble (4 bits) is greater than 9, or
if AC=1, add 0110 to the lower 4 bits

DA Instruction 2. If the upper nibble is greater than 9, or if
(cont’) CY=1, add 0110 to the upper 4 bits
Example:
HEX BCD
29 0010 1001
+ 18 + 0001 1000
41 0100 0001 AC=1
+ 6 + 0110
47\ 0100 0111
N

Since AC=1 after the
addition, "DA A” will add 6 to the

lower nibble.
The final result is in BCD format.

ARITHMETIC
INSTRUCTIONS

DA Instruction
(cont’)

Assume that 5 BCD data items are stored in RAM locations starting
at 40H, as shown below. Write a program to find the sum of all the
numbers. The result must be in BCD.

40=(71)
41=(11)
42=(65)
43=(59)
44=(37)
Solution:
MOV RO, #40H ;Load pointer
MOV R2,#5 ;Load counter
CLR A ;A=0
MOV R7,A ;Clear RY7
AGAIN: ADD A,@RO ;add the byte pointer
;to by RO
DA A ;adjust for BCD
JNC NEXT ;1T CY=0 don’t
;accumulate carry
INC R7 ,keep track of carries
NEXT: INC RO ;Increment pointer

DINZ R2,AGAIN ;repeat until R2 1s O

o In many microprocessor there are two
AL different instructions for subtraction:
DS ILELS SUB and SUBB (subtract with borrow)

» In the 8051 we have only SUBB

» The 8051 uses adder circuitry to perform
the subtraction

Subtraction of
Unsigned
Numbers

SUBB A,source ;A = A — source — CY

a To make SUB out of SUBB, we have to
make CY=0 prior to the execution of
the Instruction

» Notice that we use the CY flag for the
borrow

o SUBB when CY =0
ARITHMETIC 1. Take the 2’s complement of the

INSTRUCTIONS subtrahend (source operand)

2. Add it to the minuend (A)

Subtraction of 3. Invert the carry
Unsigned

CLR C
Numbers MOV A,#4C -load A with value 4CH
(cont’) SUBB A,#6EH :subtract 6E from A

JNC NEXT ;1T CY=0 jump to NEXT
CPL A ;i1f Cy=1, take 1°s complement
INC A ;and Increment to get 2’s comp

NEXT: MOV R1,A ;save A iIn_R1 D 2's
Solution: /

4C 0100 1100 0100 1100
CY=0, the result is positive; [EEREEPN= 0110 1110~ 1001 0010
CY=1, the result is negative 22 01101 1110)

and the destination has the

2’s complement of the result

N\

o SUBB when CY =1

» This instruction is used for multi-byte
numbers and will take care of the borrow

of the lower operand
A =62H-96H-0=CCH

ARITHMETIC
INSTRUCTIONS

Subtraction of

) CLR C cY=1
Unsigned MOV /@H ;A=62H
Numbers SUBB” A,#96H :62H-96H=CCH with CY=1
(cont’) MOV R7,A ;save the result

MOV A,#27H ;A=27H
SUBB A,#12H ;27H-12H-1=14H
MOV R6,A ;save the result
A=27H-12H-1=14H
CY=0
We have 2762H - 1296H = 14CCH.

Solution:

ARITHMETIC
INSTRUCTIONS

o The 8051 supports byte by byte
multiplication only

» The byte are assumed to be unsigned data

Unsigned MUL AB ;AxB, 16-bit result in B, A

Multiplication MOV
MOV
MUL

A,#25H
B,#65H
AB

;load 25H to reg. A
,load 65H to reg. B
;25H * 65H = E99 where
;B = OEH and A = 99H

Unsigned Multiplication Summary (MUL AB)

Multiplication Operandl | Operand2 | Result
Byte x byte |A B B = high byte
A = low byte

o The 8051 supports byte over byte
division only
» The byte are assumed to be unsigned data
Unsigned DIV AB ;divide A by B, A/B
Division

ARITHMETIC
INSTRUCTIONS

MOV A,#95 ;load 95 to reg. A
MOV B,#10 ;load 10 to reg. B
MUL AB ;A = 09(quotient) and
O5(remainder)

Unsigned Division Summary (DIV AB)

Division Numerator | Denominator | Quotient Remainder

Byte /7 byte | A B A B

CY is always 0

IfB-0,0V=0
If B=0, OV =1 indicates error

ARITHMETIC
INSTRUCTIONS

Application for
DIV

(a) Write a program to get hex data in the range of 00 — FFH from
port 1 and convert it to decimal. Save it in R7, R6 and R5.
(b) Assuming that P1 has a value of FDH for data, analyze program.

Solution:
(a)
MOV A,#OFFH
MOV P1,A ;make P1 an input port
MOV A,P1 ;read data from P1
MOV B,#10 ;B=0A hex
DIV AB ;divide by 10
MOV R7,B ;save lower digit
MOV B,#10
DIV AB ;divide by 10 once more
MOV R6,B ;save the next digit
MOV R5,A ;save the last digit

(b) To convert a binary (hex) value to decimal, we divide it by 10
repeatedly until the quotient is less than 10. After each division the
remainder is saves.

Q R
FD/OA = 19 3 (low digit)
19/0A = 2 5 (middle digit)

2 (high digit)
Therefore, we have FDH=253.

o D7 (MSB) Is the sign and DO to D6 are
SIGNED the magnitude of the number

SR UG ISULIE » If D7=0, the operand is positive, and if
D7=1, it is negative

INSTRUCTIONS

D7 D6 D5 D4 D3 D2 D1 DO

Signed 8-hit

Operands } } }

Sign Magnitude
o Positive numbers are O to +127

o Negative number representation (2’s
complement)
1. Write the magnitude of the number in 8-bit
binary (no sign)
2. Invert each bit
3. Add 1 to it

SIGNED
ARITHMETIC
INSTRUCTIONS

Signed 8-hit
Operands
(cont’)

Show how the 8051 would represent -34H

Solution:

1. 0011 0100 34H given in binary

2. 1100 1011 invert each bit

3. 1100 1100 add 1 (which 1s CC 1n hex)
Signed number representation of -34 in 2’s complement is CCH

Decimal Binary Hex
-128 1000 0000 80
-127 1000 0001 81
-126 1000 0010 82
-2 1111 1110 FE
-1 1111 1111 FF
0 0000 0000 00
+1 0000 0001 01
+2 0000 0010 02

+127 0111 1111 7F

o If the result of an operation on signed

SIGNED numbers is too large for the register

ARITHMETIC
INSTRUCTIONS > An overflow has occurred and the

programmer must be noticed

Overflow Examine the following code and analyze the result.

Problem MOV A,#+96 -A=0110 0000 (A=60H)
MOV R1,#+70 ;R1=0100 0110(R1=46H)
ADD A,R1 ;A=1010 0110

-A=A6H=-90, INVALID
Solution:
+96 0110 0000

+ +70 0100 0110
+ 166 1010 0110 and OV =1

According to the CPU, the result is -90, which is wrong. The CPU
sets OV=1 to indicate the overflow

SIGNED
ARITHMETIC
INSTRUCTIONS

OV Flag

o In 8-bit sighed number operations,
OV is set to 1 If either occurs:

1. There is a carry from D6 to D7, but no
carry out of D7 (CY=0)

2. There is a carry from D7 out (CY=1), but
no carry from D6 to D7

MOV A,#-128 :A=1000 0000(A=80H)
MOV R4,#-2 ;R4=1111 1110(R4=FEH)
ADD A,R4 -A=0111 1110(A=7EH=+126, INVALID)
-128 1000 0000
+ -2 1111 1110
-130 0111 1110 and OV=1
_

ov=1

The result +126 is wrong

MOV A,#-2 ;A=1111 1110(A=FEH)
MOV R1,#-5 ;R1=1111 1011(R1=FBH)

SIGNED ADD A,R1 ;A=1111 1001 (A=F9H=-7,
ARITHMETIC Correct, OV:())
INSTRUCTIONS -2 1111 1110
+ —_5 1111 1011

oV Flag -7 1113. 1001 and 0OV=0

(cont’) N S
The result -7 is correct

MOV A,#+7 ;A=0000 0111(A=07H)
MOV R1,#+18 ;R1=0001 0010(R1=12H)
ADD A,R1 ;A=0001 1001(A=19H=+25,
;Correct,0V=0)
7 0000 0111
+ 18 0001 0010
25 0001 1001 and OV=0

— ov=0
The result +25 is correct

o In unsigned number addition, we must

SIGNED .
ARITHMETIC monitor the status of CY (carry)

INSTRUCTIONS > Use JNC or JC instructions

o In signed number addition, the OV

O(\c/olrjlt%g (overflow) flag must be monitored by

the programmer
> JB PSW.2 or INB PSW.2

SIGNED
ARITHMETIC
INSTRUCTIONS

2's
Complement

o To make the 2’s complement of a

number
CPL A ;1’s complement (invert)
ADD A,#1 ;add 1 to make 2°s comp.

ANL destination,source
LOGIC AND -dest = dest AND source

INS?T%'\('JF?FF:CE)NS a This instruction will perform a logic
AND on the two operands and place
the result Iin the destination

» The destination is normally the
accumulator

» The source operand can be a register, In
memory, or immediate

AND

Show the results of the following.

MOV A,#35H ;A
ANL A,#0OFH ;A

ANL is often used to
35H 001 101
OFH 00 O/(l)/gL)/l 11 mask (set to 0) certain
O5H 0000010 1 bits of an operand

ORL destination,source
LOGIC AND -dest = dest OR source

SOl O The destination and source operands
ARIRVGLIONEY gre ORed and the result is placed in
the destination

» The destination is normally the
accumulator

» The source operand can be a register, In
memory, or immediate

OR

Show the results of the following.

MOV A,#04H ;A
ORL A,#68H ;A

ORL instruction can be

04H 000 100 used to set certain bits
68H 0/11/0/1j000 of an operand to 1
6CH 01101100

XRL destination,source
LOGIC AND -dest = dest XOR source
COMPARE T
INSTRUCTIONS (i

nis Instruction will perform XOR
operation on the two operands and
XOR place the result in the destination

» The destination is normally the
accumulator

» The source operand can be a register, In
memory, or immediate

Show the results of the following.
MOV A,#54H

XRL A, #78H e XRL instruction can be
54H used to toggle certain

010
/8H 011
001

bits of an operand

R RO
R OR
cNoNe)
cNoNe)

LOGIC AND
COMPARE
INSTRUCTIONS

XOR
(cont’)

The XRL instruction can be used to clear the contents of a register by
XORing it with itself. Show how XRL A, A clears A, assuming that

AH = 45H.

45H 01000101
45H 01000101
OOH 00000O0O0O

Read and test P1 to see whether it has the value 45H. If it does, send
99H to P2; otherwise, it st

XRL can be used to

Solution: see If two registers
MOV P2,#00 clear P2 BEVERUEEEMEREUNE
MOV P1A#0FFH ;make P1 an input port
MOV ,#45H ;R3=45H
MOV /A,P1 ;read Pl
XRL A,R3
JINZ, EXIT ;jump If A 1s not O
MO\Z/\§2,#99H

EXIT: ... If both registers have the same

value, 00 is placed in A. INZ

and JZ test the contents of the
accumulator.

CPL A ;complements the register A

LOGIC AND o
e o This is called 1's complement
INSTRUCTIONS OV A. #55H
CPL A ;how A=AAH
Complement ;0101 0101(55H)

;becomes 1010 1010(CAAH)

Accumulator

o To get the 2's complement, all we
have to do is to to add 1 to the 1's
complement

CINE destination,source,rel. addr.

LOGIC AND
e o The actions of comparing and jumping

gl are combined into a single instruction

called CINE (compare and jump if not

Compare equal)
Instruction

» The CINE Iinstruction compares two
operands, and jumps if they are not equal

» The destination operand can be in the
accumulator or in one of the Rn registers

» The source operand can be in a register, in
memory, or immediate
» The operands themselves remain unchanged

» It changes the CY flag to indicate If the
destination operand is larger or smaller

CINE R5,#80,NOT_EQUAL ;check R5 for 80
LOGIC AND ;R5 = 80

COMPARE NOT EQUAL -

INSTRUCTIONS JIJNC NEXT ;jump 1f R5 > 80
L :R5 < 80
NEXT :

Compare

Instruction Compare Carry Flag
(cont’) destination > source CY =0

destination < source CY =1

CY flag is always
checked for cases

rawsmsmsreall 0 Notice in the CINE instruction that any
than, but only after Rn register can be compared with an
it is determined that Immediate value

they are not equal : :
4 ; > There is no need for register A to be
involved

o The compare instruction is really a
LOGIC AND subtraction, except that the operands
COMPARE remain unchanged

INSTRUCTIONS » Flags are changed according to the
execution of the SUBB instruction

Compare Write a program to read the temperature and test it for the value 75.
Instruction According to the test results, place the temperature value into the
, registers indicated by the following.
(cont’) If T =75 then A= 75

If T<75 thenR1=T
If T>75thenR2=T

Solution:
MOV P1,#0FFH ;make P1 an input port
MOV A,P1 ;read P1 port
CINE A,#75,0VER ;;jump 1T A 1s not 75
SIMP EXIT ;A=75, exit

OVER: JINC NEXT ;1T CY=0 then A>75
MOV R1,A ;CY=1, A<75, save iIn Rl
SIMP EXIT ; and exit

NEXT: MOV R2,A ;A>75, save 1t In R2

EXIT:

RR A ;rotate right A
ROTATE

INSTRUCTION O In I‘Otate nght
AND DATA > The 8 bits of the accumulator are rotated

SERIALIZATION right one bit, and
_ _ > Bit DO exits from the LSB and enters into
Rotating Right MSB, D7
and Left

2 MSB——LSB
MOV A,#36H -A = 0011 0110
RR A -A = 0001 1011
RR A -A = 1000 1101
RR A -A = 1100 0110
RR A -A = 0110 0011

RL A -rotate left A

ROTATE
InsTRUCTION IERIRCIELE left

AND DATA > The 8 bits of the accumulator are rotated

SERIALIZATION left one bit, and
_ _ > Bit D7 exits from the MSB and enters into
Rotating Right LSB, DO
and Left
(cont’)
MSB+«— LSB -
MOV A,#72H ;A = 0111 0010
RL A ;A = 1110 0100
RL A ;A = 1100 1001

RRC A ;rotate right through carry

ROTATE
INSTRUCTION [EIUURNNSNS
AND DATA > Bits are rotated from left to right

SERIALIZATION > They exit the LSB to the carry flag, and
the carry flag enters the MSB

Rotating

through Carry
> MSB——LSB — CY —
CLR C -make CY = 0O
MOV A,#26H -A = 0010 0110
RRC A -A = 0001 0011 CY =0
RRC A -A = 0000 1001 cYy =1
RRC A -A = 1000 0100 cYy =1

RLC A ,rotate left through carry

ROTATE
INSTRUCTION JERUENSONS
AND DATA » Bits are shifted from right to left

SERIALIZATION > They exit the MSB and enter the carry flag,

_ and the carry flag enters the LSB
Rotating

through Carry
(cont) — CY «— MSB+—LSB

Write a program that finds the number of 1s in a given byte.

MOV R1,#0
MOV R7,#8 ;count=08
MOV A, #97H
AGAIN: RLC A
JINC NEXT .check for CY
INC R1 :1F CY=1 add to count

NEXT: DJINZ R7,AGAIN

o Serializing data is a way of sending a
ROTATE h £ bi . X n
INSTRUCTION yt.e 0 qta one It at a time throug
AND DATA a single pin of microcontroller

SERIALIZATION > Using the serial port, discussed in Chapter
10

> To transfer data one bit at a time and
control the sequence of data and spaces
In between them

Serializing Data

— o Transfer a byte of data serially by
INSTRUCTION > Moving CY to any pin of ports PO — P3
AND DATA » Using rotate instruction

1= AR VAN IOI\R | \Write a program to transfer value 41H serially (one bit at a time)
via pin P2.1. Put two highs at the start and end of the data. Send the
byte LSB first.

Serializing Data

; Solution:
(cont’) MOV A,#41H
SETB P2_.1 ;high
SETB P2_.1 ;high

MOV R5,#8
AGAIN: RRC A
MOV P2.1,C :send CY to P2.1
DINZ R5,HERE
SETB P2.1 ;high
SETB P2.1 ;high

Pin
Register A | — CY [— P2.1
D7 DO

ROTATE
INSTRUCTION
AND DATA
SERIALIZATION

Serializing Data
(cont’)

Write a program to bring in a byte of data serially one bit at a time
via pin P2.7 and save it in register R2. The byte comes in with the
LSB first.

Solution:
MOV R5,#8
AGAIN: MOV C,P2.7 ;bring in bit
RRC A
DINZ R5,HERE
MOV R2,A save 1t
Pin

P2.7 —| CY — | Register A
D7 DO

o There are several instructions by which

IN Si%LgEON the CY flag can be manipulated directly
AND DATA Instruction Function
SERIALIZATION [==—as YISV
CLR C Clear carry bit (CY = 0)
Single-hit CPL C Complement carry bit
Operations with MOV b,C Copy carry status to bit location (CY = b)
CY MOV C,b Copy bit location status to carry (b = CY)
JNC target Jump to target if CY =0
JC target Jump to target if CY =1
ANL C,bit AND CY with bit and save it on CY
ANL C,/bit AND CY with inverted bit and save it on CY
ORL C,bit OR CY with bit and save it on CY

ORL C,/bit OR CY with inverted bit and save it on CY

ROTATE Assume that bit P2.2 is used to control an outdoor light and bit P2.5
a light inside a building. Show how to turn on the outside light and
INSIROIOIRIOINE | turn off the inside one.
AND DATA Solution:
SERIALIZATION SETB C ;CY = 1
ORL C,P2.2 ;CY = P2.2 ORed w/ CY
: _ MOV P2.2,C ;turn 1t on 1f not on
Single-bit CLR C ;CY =0 o
- - ANL C,P2.5 ;CY = P2.5 ANDed w/ CY
OperatéanS with MOV pP2.5,C ;turn it off if not off
(cont’) Write a program that finds the number of 1s in a given byte.
Solution:
MOV R1,#0 ;R1 keeps number of 1s
MOV R7,#8 ;counter, rotate 8 times
MOV A,#97H ;find number of 1s iIn 97H
AGAIN: RLC A ;rotate 1t thru CY
JNC NEXT ,check CY
INC R1 ;1T CY=1, 1nc count
NEXT: DJINZ R7,AGAIN ;go thru 8 times

SWAP A
ROTATE .
INSTRUCTION IERUVVEINS the lower nibble and the

AND DATA higher nibble

SERIALIZATION > In other words, the lower 4 bits are put
Into the higher 4 bits and the higher 4 bits
SWAP are put into the lower 4 bits

o SWAP works only on the accumulator

(A)
before : D7-D4 D3-D0
after : D3-D0 D7-D4

(@) Find the contents of register A in the following code.
ROTATE (b) In the absence of a SWAP instruction, how would you
INSTRUCTION exchange the nibbles? Write a simple program to show the
AND DATA Process.
SERIALIZATION Solution:
(a)
SWAP MOV A,#72H A = 72H
(cont) SWAP A ;A = 27H
(b)
MOV A,#72H ;A = 0111 0010
RL A ;A = 0111 0010
RL A ;A = 0111 0010
RL A ;A = 0111 0010
RL A ;A = 0111 0010

BCD AND ASCII
APPLICATION
PROGRAMS

ASCII code and BCD for digits 0 - 9

Key ASCII1 (hex) Binary BCD (unpacked)
0 30 011 0000 0000 0000
1 31 011 0001 0000 0001
2 32 011 0010 0000 0010
3 33 011 0011 0000 0011
4 34 011 0100 0000 0100
5 35 011 0101 0000 0101
6 36 011 0110 0000 0110
7 37 011 0111 0000 0111
8 38 011 1000 0000 1000
9 39 011 1001 0000 1001

BCD AND ASCII
APPLICATION
PROGRAMS

Packed BCD to
ACSII
Conversion

o The DS5000T microcontrollers have a
real-time clock (RTC)
» The RTC provides the time of day (hour,
minute, second) and the date (year,

month, day) continuously, regardless of
whether the power is on or off

o However this data is provided In
packed BCD

» To be displayed on an LCD or printed by
the printer, it must be in ACSII format

Packed BCD Unpacked BCD ASCII

29H 02H & O09H 32H & 39H

0010 1001 ‘ 0000 0010 & 0011 0010 &
0000 1001 0011 1001

o To convert ASCII to packed BCD

BCD AND ASCII o
APPLICATION » It is first converted to unpacked BCD (to

PROGRAMS get rid of the 3)

» Combined to make packed BCD
ASCII to
Packed BCD key ASCII Unpacked BCD Packed BCD
Conversion 4 34 0000 0100 ‘
7 37 0000 0111 0100 0111 or 47H

MOV A, #74° ;A=34H, hex for <4~

MOV R1,#”7° ;R1=37H,hex for “7~

ANL A, #0FH ;mask upper nibble (A=04)
ANL R1,#0FH ;mask upper nibble (R1=07)
SWAP A - A=40H

ORL A, R1 ;A=47H, packed BCD

BCD AND ASCII
APPLICATION
PROGRAMS

ASCII to
Packed BCD
Conversion

(cont’)

Assume that register A has packed BCD, write a program to convert
packed BCD to two ASCII numbers and place them in R2 and R6.

MOV
MOV
ANL
ORL
MOV

MOV
data

ANL
RR
RR
RR
RR
ORL
MOV

A,#29H ;A=29H, packed BCD

R2,A ,keep a copy of BCD data
A,#OFH ;mask the upper nibble (A=09)
A,#30H ;make 1t an ASCII1, A=39H(*97)
R6,A ;save i1t

A,R2 ;A=29H, get the original

A,#0OFOH ;mask the lower nibble
A ;rotate right)
A ;rotate right

A ;rotate right > SWAP A
A ;rotate right
A,#30H ;A=32H, ASCII Char. ”2”
R2,A -save ASCII char 1n R2

Assume that the lower three bits of P1 are connected to three
BCD AND ASCII switches. Write a program to send the following ASCII characters
AN (OVNR (O | o P2 based on the status of the switches.

PROGRAMS 000 0
001 ‘I’

010 ‘2’

Using a Look- g(l)é ji:
up Table for 01 5
ASCII 110 ‘6’

11 7

Solution:
MOV DPTR,#MYTABLE
MOV A,P1 ;get SW status
ANL A,#07H ;mask all but lower 3
MOVC A,@A+DPTR ;get data from table

MOV P2,A ;display value
SIMP & ;stay here
’ ORG 400H

MYTABLE DB ‘O”‘l’"2”‘3”‘4”‘51,‘61,‘7,
END

o To ensure the integrity of the ROM

BCD AND ASCII f
APPLICATION contents, every system must perform
PROGRAMS the checksum calculation
» The process of checksum will detect any
Checksum Byte corruption of the contents of ROM
In ROM » The checksum process uses what is called

a checksum byte

= The checksum byte is an extra byte that is
tagged to the end of series of bytes of data

o To calculate the checksum byte of a

BXFE)PSI\CI:[;TA,%CI\:I series of bytes of data
PROGRAMS » Add the bytes together and drop the
carries
Checksum Byte > Take the 2’s complement of the total sum,
in ROM and it becomes the last byte of the series

(cont’)

o To perform the checksum operation,
add all the bytes, including the
checksum byte

» The result must be zero

» If It Is not zero, one or more bytes of data
have been changed

BCD AND ASCII
APPLICATION
PROGRAMS

Checksum Byte

In ROM
(cont’)

Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3FH, and
52H.(a) Find the checksum byte, (b) perform the checksum operation to
ensure data integrity, and (c) if the second byte 62H has been changed
to 22H, show how checksum detects the error.

Solution:
(a) Find the checksum byte.
25H The checksum is calculated by first adding the
+ 62H bytes. The sum is 118H, and dropping the carry,
+ 3FH we get 18H. The checksum byte is the 2’s
+ 52H complement of 18H, which is ESH
118H
(b) Perform the checksum operation to ensure data integrity.
25H
+ 62H Adding the series of bytes including the checksum
+ 3FH byte must result in zero. This indicates that all the
+ 52H bytes are unchanged and no byte is corrupted.
+ E8H

200H (dropping the carries)
(c) If the second byte 62H has been changed to 22H, show how
checksum detects the error.

25H
+ 22H Adding the series of bytes including the checksum
+ 3FH byte shows that the result is not zero, which indicates
+ 52H that one or more bytes have been corrupted.
+ E8H

1COH (dropping the carry, we get COH)

BCD AND ASCII
APPLICATION
PROGRAMS

Binary (Hex)
to ASCI|I
Conversion

o Many ADC (analog-to-digital converter)
chips provide output data in binary
(hex)

» To display the data on an LCD or PC
screen, we need to convert it to ASCII

= Convert 8-bit binary (hex) data to decimal
digits, 000 — 255

= Convert the decimal digits to ASCII digits,
30H - 39H

8051 PROGRAMMING IN C

The 8051 Microcontroller and Embedded
Systems. Using Assembly and C
Mazidi, Mazidi and McKinlay

Chung-Ping Young
HL 1T

a2 Compilers produce hex files that is
downloaded to ROM of microcontroller

» The size of hex file is the main concern
= Microcontrollers have limited on-chip ROM
» Code space for 8051 is limited to 64K bytes

o C programming is less time consuming,
but has larger hex file size

o The reasons for writing programs in C

» It Is easier and less time consuming to
write in C than Assembly

» C Is easier to modify and update

> You can use code available in function
libraries

» C code Is portable to other microcontroller
with little of no modification

WHY
PROGRAM
8051 IN C

o A good understanding of C data types
for 8051 can help programmers to
create smaller hex files

» Unsigned char
» Signed char

» Unsigned int

» Sighed int

» Shit (single bit)
» Bit and sfr

DATA TYPES

o The character data type is the most
natural choice
Unsigned char » 8051 is an 8-bit microcontroller

o Unsigned char is an 8-bit data type In
the range of 0 — 255 (00 — FFH)

» One of the most widely used data types
for the 8051

= Counter value
= ASCII characters

o C compilers use the signed char as the
default if we do not put the keyword
unsigned

DATA TYPES

DATA TYPES

Unsigned char
(cont’)

Write an 8051 C program to send values 00 — FF to port P1.

Solution:

#include <reg51.h>
void main(void)

{

Pay careful attention to
the size of the data

Try to use unsigned char
Instead of int if possible

unsigned char z;
for (z=0;z<=255;z++)
Pl=z;
+

Write an 8051 C program to send hex values for ASCII characters of
0,1,23,4,5 A, B, C,and D to port P1.

Solution:

#include <reg5l1.h>
void main(void)
{
unsigned char mynum|[]=“012345ABCD”’;
unsigned char z;
for (z=0;z<=10;z++)
Pl=mynum|[Zz];

DATA TYPES

Unsigned char
(cont’)

Write an 8051 C program to toggle all the bits of P1 continuously.

Solution:

//Toggle P1 forever
#include <reg51.h>
void main(void)
{
for (:;3)
{
p1=0x55;
p1=0xAA;
+

o The signed char is an 8-bit data type
DATA TYPES » Use the MSB D7 to represent — or +
» Give us values from -128 to +127

SCUCERRUEIN \We should stick with the unsigned char
unless the data needs to be
represented as signed numbers

> temperature

Write an 8051 C program to send values of —4 to +4 to port P1.

Solution:

//51nged numbers
#include <reg5l1.h>
void main(void)

char mynum[]={+1,-1,+2,-2,+3,-3,+4,-4};
unsigned char z;
for (z=0;z<=8;z++)

Pl=mynum[z];

o The unsigned Int is a 16-bit data type

» Takes a value In the range of 0 to 65535

Unsigned and (0000 — FFFFH)

Signed int > Define 16-bit variables such as memory
addresses

> Set counter values of more than 256

» Since registers and memory accesses are
In 8-bit chunks, the misuse of int variables
will result in a larger hex file
o Signed int Is a 16-bit data type
» Use the MSB D15 to represent — or +

» We have 15 bits for the magnitude of the
number from -32768 to +32767

DATA TYPES

DATA TYPES

Single Bit
(cont’)

Write an 8051 C program to toggle bit DO of the port P1 (P1.0)
50,000 times.

Solution: _

i sbit keyword allows access to the
#1ncl SO single bits of the SFR registers
sbit MYBIT=P170;
void main(void)

{

unsigned int z;
for (z=0;z<=50000;z++)
{
MYBIT=0;
MYBIT=1;

}

o The bit data type allows access to
single bits of bit-addressable memory
Bit and sfr spaces 20 — 2FH

o To access the byte-size SFR registers,
we use the sfr data type

DATA TYPES

Data Type Size in Bits Data Range/Usage
unsigned char 8-bit 0 to 255

(signed) char 8-bit -128 to +127

unsigned int 16-Dbit 0 to 65535

(signed) int 16-bit -32768 to +32767

shit 1-bit SFR bit-addressable only
bit 1-bit RAM bit-addressable only

sfr 8-bit RAM addresses 80 — FFH only

o There are two way s to create a time
PUISRIERNEY (clay in 8051 C

» Using the 8051 timer (Chap. 9)
» Using a simple for loop

be mindful of three factors that can affect
the accuracy of the delay
* The 8051 design
— The number of machine cycle

— The number of clock periods per machine
cycle
* The crystal frequency connected to the X1 — X2
input pins
= Compiler choice

— C compiler converts the C statements and
functions to Assembly language instructions

— Different compilers produce different code

TIME DELAY
(cont’)

Write an 8051 C program to toggle bits of P1 continuously forever
with some delay.

Solution:

//Toggle P1 forever with some delay iIn between
//on” and “off”

#include <regb5l.h>
void main(void)

{

We must use the oscilloscope to

measure the exact duration

unsigned int/x;
for (;3)
{

//repeat forever

p1l=0x55;

for (x=0;x<40000;x++); //delay size
//unknown

p1=0xAA;

for (x=0;x<40000;x++);

TIME DELAY
(cont’)

Write an 8051 C program to toggle bits of P1 ports continuously with
a 250 ms.

Solution:

#include <reg5l1l.h>
void MSDelay(unsigned int);
void main(void)

whige D //repeat forever
p1=0x55;
MSDelay(250) ;
p1=0xAA;
MSDelay(250) ;
+
+
void MSDelay(unsigned int 1time)

unsigned Int 1,j;
for (1=0;i1<itime;i1++)
for (J=0;J<1275;j++);

1/0 LEDs are connected to bits P1 and P2. Write an 8051 C program that
sI=lglel=Y\\YIViIIN[el | shows the count from 0 to FFH (0000 0000 to 1111 1111 in binary)
on the LEDs.

Byte Size 1/0 [

#include <reg51 y_ Ports PO — P3 are byte-accessable
#defind LED P2: and we use the PO — P3 labels as

defined in the 8051/52 header file.

void main(void)

{
P1=00; //clear P1
LED=0; //clear P2
for (53) //repeat forever
{
Pl++; //increment P1
LED++; //increment P2
¥

1/0
PROGRAMMING

Byte Size 1/0
(cont’)

Write an 8051 C program to get a byte of data form P1, wait 1/2
second, and then send it to P2.

Solution:

#include <reg5l1.h>
void MSDelay(unsigned int);

void main(void)

{
unsigned char mybyte;
P1=0xFF; //make Pl input port
while (1)
{
mybyte=P1; //get a byte from P1
MSDelay(500) ;
P2=mybyte; //send 1t to P2
+

1/0 Write an 8051 C program to get a byte of data form PO. If it is less
sI=Yglel=Y\\YIViIIN\[@ | than 100, send it to P1; otherwise, send it to P2.

Solution:
C\VICISIFA-RV/OM | #include <reg51.h>
n]
() void main(void)
{
unsigned char mybyte;
PO=0xFF; //make PO 1nput port
while (1)
{
mybyte=PO; //get a byte from PO
1T (nybyte<100)
Pl=mybyte; //send i1t to P1
else
P2=mybyte; //send 1t to P2
+

1/0 Write an 8051 C program to toggle only bit P2.4 continuously without
sI=Yglel=Y\\YIViIIN\[el | disturbing the rest of the bits of P2.

Solution:

Bit-addressable §WZarr1 individual bit INEE e R e

1/0 #includé <regsSl.h> a single bit of PO - P3
sbit mybi1t=P274;

Ports PO — P3 are bit-
addressable and we use

void main(void) Use the Px"y format, where
{ X is the port 0, 1, 2, or 3 and
wh l{! e (1) y is the bit 0 — 7 of that port
mybit=1; //turn on P2.4
mybi1t=0; //turn off P2.4
+

1/0
PROGRAMMING

Bit-addressable

1/0
(cont’)

Write an 8051 C program to monitor bit P1.5. If it is high, send 55H
to PO; otherwise, send AAH to P2.

Solution:

#include <reg5l1.h>
sbit mybi1t=P1"5;

void main(void)
{
mybit=1; //make mybit an i1nput
while (1)
{
It (nybit==1)
PO=0x55;
else
P2=0xAA;

1/0
PROGRAMMING

Bit-addressable

1/0
(cont’)

A door sensor is connected to the P1.1 pin, and a buzzer is connected
to P1.7. Write an 8051 C program to monitor the door sensor, and
when it opens, sound the buzzer. You can sound the buzzer by
sending a square wave of a few hundred Hz.

Solution:

#include <reg5l1.h>

void MSDelay(unsigned int);
sbit Dsensor=P17°1;

sbit Buzzer=P1"7;

void main(void)

{

Dsensor=1; //make P1.1 an input
while (1)

while (Dsensor==1)//while 1t opens

Buzzer=0;
MSDelay(200) ;
Buzzer=1;
MSDelay (200) ;

}
¥

1/0
PROGRAMMING

Bit-addressable

1/0
(cont’)

The data pins of an LCD are connected to P1. The information is
latched into the LCD whenever its Enable pin goes from high to low.
Write an 8051 C program to send “The Earth is but One Country” to
this LCD.

Solution:

#include <reg5l1.h>
#define LCDData P1 //LCDData declaration
sbit En=P270; //the enable pin

void main(void)
{
unsigned char message[]
=“The Earth i1s but One Country”’;
unsigned char z;
for (z=0;z<28;z++) //send 28 characters

{

LCDData=message[z];

En=1; //a high-

En=0; //-to-low pulse to latch data
+

1/0
PROGRAMMING

Accessing SFR
Addresses
80 - FFH

Write an 8051 C program to toggle all the bits of PO, P1, and P2
continuously with a 250 ms delay. Use the sfr keyword to declare the

port addresses. Another way to access the SFR RAM

space 80 — FFH is to use the sfr data type

Solution:

essing Ports as SFRs using sfr data type
str P0=0x80;

str P1=0x90;

str P2=0xA0;

void MSDelay(unsigned int);

void main(void)

whige (D
PO=0x55;
P1=0x55;
P2=0x55;
MSDelay(250) ;
PO=0xAA;
P1=0xAA;
P2=0xAA;
MSDelay(250) ;

1/0
PROGRAMMING

Accessing SFR
Addresses

80 - FFH
(cont’)

Write an 8051 C program to turn bit P1.5 on and off 50,000 times.

Solution: We can access a single bit of any
shit MYBIT=0x95; SFR if we specify the bit address
void main(void)
{ unsigned iInt z;
for (z=0;z<50000;z++)
{
MYBIT=1;
MYBIT=0;
+
+

Notice that there is no #1include <reg51.h>.
This allows us to access any byte of the SFR RAM

space 80 — FFH. This is widely used for the new
generation of 8051 microcontrollers.

1/0
PROGRAMMING

Using bit Data
Type for
Bit-addressable
RAM

Write an 8051 C program to get the status of bit P1.0, save it, and
send it to P2.7 continuously.

Solution:

#include <reg5l1.h>

sbit 1nbi1t=P170;

sbit outbit=P2/7;

bit membit; //use bit to declare
//bit- addressable memory

We use bit data type to access

void main(void)

{

data in a bit-addressable section
while (1) of the data RAM space 20 — 2FH

{

membit=1nbit; //get a bit from P1.0
outbit=membit; //send 1t to P2.7

}

o Logical operators
LOGIC

OPERATIONS > AND (&&), OR (||), and NOT (')
o Bit-wise operators

Bit-wise > AND (&), OR (]), EX-OR (%), Inverter (=),
Operators in C Shift Right (>>), and Shift Left (<<)

= These operators are widely used in software
engineering for embedded systems and control

Bit-wise Logic Operators for C

AND OR EX-OR Inverter

A B A&B A|B ANB ~B
0 0 0 0 0 1

0 1 0 1 1 0

1 0 0 1 1

1 1 1 1 0

LOGIC
OPERATIONS

Bit-wise
Operators in C
(cont’)

Run the following program on your simulator and examine the results.

Solution:

#include <reg5l1.h>

void main(void)

{

PO=0x35 & OxOF;
P1=0x04 | 0x68;
P2=0x54 ™ 0Ox78;
PO=~0x55;
P1=0x9A >> 3;
P2=0X77 >> 4;
PO=0x6 << 4;

//ANDINg

//0Ri1ng

//X0ORing
//1inversing
//shifting right 3
//shifting right 4
//shifting left 4

LOGIC
OPERATIONS

Bit-wise
Operators in C
(cont’)

Write an 8051 C program to toggle all the bits of PO and P2
continuously with a 250 ms delay. Using the inverting and Ex-OR
operators, respectively.

Solution:

#include <reg5l1.h>
void MSDelay(unsigned int);

void main(void)
{
PO=0x55;
P2=0x55;
while (1)
{
PO=~PO;
P2=P2"OXFF;
MSDelay(250) ;
¥

LOGIC
OPERATIONS

Bit-wise
Operators in C
(cont’)

Write an 8051 C program to get bit P1.0 and send it to P2.7 after
inverting it.

Solution:

#include <reg5l1.h>
sbit 1nbi1t=P170;
sbit outbit=P277;
bit membit;

void main(void)
{
while (1)
{
membit=1nbit; //get a bit from P1.0
outbit=—membit; //Zinvert 1t and send
//1t to P2_.7

LOGIC
OPERATIONS

Bit-wise
Operators in C
(cont’)

Write an 8051 C program to read the P1.0 and P1.1 bits and issue an
ASCII character to PO according to the following table.

P1.1 P1.0

0 0 send ‘0’ to PO
0 1 send ‘1’ to PO
1 0 send ‘2’ to PO
1 1 send ‘3’ to PO

Solution:

#include <regb5l.h>

void main(void)
{
unsignbed char z;
z=P1;
z=78&0X3;

LOGIC
OPERATIONS

Bit-wise
Operators in C
(cont’)

switch (2)
case(0):

PO=“0";

break;

case(1):

PO="-1";

break;

}
case(2):

PO="2";

break;

}
case(3):

PO=“3";

break;

}
}
}

DATA
CONVERSION

Packed BCD to
ASCII
Conversion

Write an 8051 C program to convert packed BCD 0x29 to ASCII and
display the bytes on P1 and P2.

Solution:
#include <reg5l1.h>

void main(void)
{

unsigned char X,y,z;
unsigned char mybyte=0x29;
x=mybyte&0OxOF;
P1=x]0x30;
y=mybyte&OxFO;
y=y>>4;
P2=y]0x30;

DATA Write an 8051 C program to convert ASCII digits of ‘4’ and 7 to
CONVERSION packed BCD and display them on P1.

Solution:

ASCII to #include <reg51.h>
Packed BCD _ _ _
void main(void)

Conversion {

unsigned char bcdbyte;
unsigned char w=%4";
unsigned char z=°77;
w=w&OxOF ;

w=w<<4;

z=z8&0x0F;

bcdbyte=w]z;
Pl=bcdbyte;

DATA Write an 8051 C program to calculate the checksum byte for the data
CONVERSION

25H, 62H, 3FH, and 52H.

Solution:

Checksum Byte #include <reg51.h>

In ROM void main(void)

{
unsigned char mydata[]={0x25,0x62,0x3F,0x52}}
unsigned char sum=0;
unsigned char Xx;
unsigned char chksumbyte;
for (X=0;x<4;x++)
{
P2=mydata[x];
sum=sum+mydata[x] ;
Pl=sum;

chksumbyte=~sum+1;
Pl=chksumbyte;

DATA
CONVERSION

Checksum Byte

in ROM
(cont’)

Write an 8051 C program to perform the checksum operation to
ensure data integrity. If data is good, send ASCII character ‘G’ to PO.
Otherwise send ‘B’ to PO.

Solution:

#include <reg5l1.h>

void main(void)
{
unsigned char mydatal]
={0x25,0x62,0x3F,0x52,0xE8};
unsigned char shksum=0;
unsigned char Xx;
for (X=0;x<5;x++)
chksum=chksum+mydata[x] ;
iIT (chksum==0)
PO=“G”;
else
PO=“B”;

DATA Write an 8051 C program to convert 11111101 (FD hex) to decimal
CONVERSION and display the digits on PO, P1 and P2.

Solution:

SIEIWAGGRN | #include <reg51.h>
RESUUCUCHEN (oid nain(void)

ASCII [

' unsigned char x,binbyte,dl,d2,d3;
Conversion binby te=0xFD:
X=binbyte/10;
d1l=binbyte%l10;
d2=x%10;
d3=x/10;
PO=d1;
P1=d2;
P2=d3;

o The 8051 C compiler allocates RAM
locations

> Bank O — addresses O — 7

RAM Data > Individual variables — addresses 08 and
Space Usage beyond

by 8051 C > Array elements — addresses right after
Compiler variables

» Array elements need contiguous RAM locations
and that limits the size of the array due to the
fact that we have only 128 bytes of RAM for
everything

» Stack — addresses right after array
elements

ACCESSING
CODE ROM

ACCESSING
CODE ROM

RAM Data
Space Usage
by 8051 C
Compiler

(cont’)

Compile and single-step the following program on your 8051
simulator. Examine the contents of the 128-byte RAM space to locate
the ASCII values.

Solution:
#include <reg5l1.h>

void main(void)
{
unsigned char mynum[]="“ABCDEF”’; //RAM space
unsigned char z;
for (z=0;z<=6;z++)
Pl=mynum|[Zz];

ACCESSING
CODE ROM

RAM Data
Space Usage
by 8051 C
Compiler

(cont’)

Write, compile and single-step the following program on your 8051
simulator. Examine the contents of the code space to locate the values.

Solution:
#include <reg5l1.h>

void main(void)
{
unsigned char mydata[100]; //RAM space
unsigned char x,z=0;
for (X=0;x<100;x++)
{
z--;
mydata[x]=z;
Pl=z;
+

a2 One of the new features of the 8052
was an extra 128 bytes of RAM space

» The extra 128 bytes of RAM helps the
8052 RAM Data 8051/52 C compiler to manage Its
Space registers and resources much more
effectively
2 We compile the C programs for the
8052 microcontroller
» Use the reg52.h header file

» Choose the8052 option when compiling
the program

ACCESSING
CODE ROM

ACCESSING

CODE ROM
(cont’)

Compile and single-step the following program on your 8051
simulator. Examine the contents of the code space to locate the ASCI|I

values.

Solution:

#include <req%l.h>

void main

{

oid)

To make the C compiler use the
code space instead of the RAM

space, we need to put the
keyword code in front of the
variable declaration

code unsigned char mynum[]=*“ABCDEF’’;

unsigned char z;
for (z=0;z<=6;z++)
Pl=mynum[z];

ACCESSING Compare and contrast the following programs and discuss the
CODE ROM advantages and disadvantages of each one.

(cont’) (a) —
#include <reg51.h> Short and simple, but the
void main(void) individual characters are
{ embedded into the program and it

P1=“H”; mixes the code and data together
P1=°E”;
P1=°L"7;
P1=°L"7;
P1=°07;

ACCESSING

CODE ROM
(cont’)

/_ Use the RAM data space to store

|nclude <reg51l.h>

array elements, therefore the size

void main(void) of the array is limited

{

unsigned char mydata[]="“HELLO”’;
unsigned char z;
for (z=0;z<=5; z++)
Plzmydata[z ;

Use a separate area of the

ks code space for data. This
(c) allows the size of the array to
i be as long as you want if you
i(lyid h‘]g?nz\';g?g% h> have the on-chip ROM.
{

code unsigned char mydata[]=*“HELLO”;
unsigned char z;

for (z=0;z<=5;z++)

Pl=mydata[z];

However, the more code space you use for data,
the less space is left for your program code

o Serializing data iIs a way of sending a
byte of data one bit at a time through
a single pin of microcontroller
» Using the serial port (Chap. 10)

> Transfer data one bit a time and control
the sequence of data and spaces In
between them

* |In many new generations of devices such as
LCD, ADC, and ROM the serial versions are
becoming popular since they take less space on
a PCB

DATA
SERIALIZATION

DATA

SERIALIZATION
(cont’)

Write a C program to send out the value 44H serially one bit at a time
via P1.0. The LSB should go out first.

Solution:

#include <reg5l1.h>
sbit P1b0O=P17"0;
sbit regALSB=ACC"O;

void main(void)
{
unsigned char conbyte=0x44;
unsigned char Xx;
ACC=conbyte;
for (x=0;x<8;x++)
{
P1bO=regALSB;
ACC=ACC>>1;

}

DATA

SERIALIZATION
(cont’)

Write a C program to send out the value 44H serially one bit at a time
via P1.0. The MSB should go out first.

Solution:

#include <reg5l1.h>
sbit P1b0O=P17"0;
sbit regAMSB=ACCN7;

void main(void)
{
unsigned char conbyte=0x44;
unsigned char Xx;
ACC=conbyte;
for (x=0;x<8;x++)
{
P1bO=regAMSB;
ACC=ACC<<1;

}

DATA Write a C program to bring in a byte of data serially one bit at a time

S ==~IV\H V2 Nple)\l | via P1.0. The LSB should come in first.
(cont’) Solution:

#include <reg5l1.h>
sbit P1b0O=P17"0;
sbit ACCMSB=ACC/"7;
bit membit;

void main(void)
{
unsigned char Xx;
for (X=0;x<8;x++)
{
membi1t=P1b0;
ACC=ACC>>1;
ACCMSB=membit;
¥
P2=ACC;
}

DATA Write a C program to bring in a byte of data serially one bit at a time
S==~IV\NN V2 N9Ele]\ | via P1.0. The MSB should come in first.

(cont’) Solution:

#include <reg5l1.h>
sbit P1b0=P17M0;
sbit regALSB=ACC"O;
bit membit;

void main(void)
{
unsigned char Xx;
for (X=0;x<8;x++)
{
membit=P1b0;
ACC=ACC<<1;
regALSB=membit;
¥
P2=ACC;
ks

HARDWARE CONNECTION
AND INTEL HEX FILE

The 8051 Microcontroller and Embedded
Systems. Using Assembly and C
Mazidi, Mazidi and McKinlay

Chung-Ping Young
TRl

o 8051 family members (e.g, 8751,
89C51, 89C52, DS89C4x0)

» Have 40 pins dedicated for various
functions such as 1/0, -RD, -WR, address,
data, and interrupts

» Come In different packages, such as
= DIP(dual in-line package),
= QFP(quad flat package), and
» LLC(leadless chip carrier)

» Some companies provide a 20-pin version
of the 8051 with a reduced number of
1/0 ports for less demanding applications

PIN
DESCRIPTION

8051 pin diagram

PIN -
.

PESERIFHON — . o0
(cont) P12 3 PO.1(AD1)
P13 4 P0.2(AD2)
P14 5 P0.3(AD3)
PLS 6 PO.A(AD4)
PL6 7 PO.5(ADS)

PO.6(AD
o mi e

(RXD)P3.0 p (DS39C4x0 "EA/VPP

(TXD)P3.1 n o ATS9CSH1 ALE/-PROG
(-INTO)P3.2 12 -PSEN

(-INT1P3.3 13 8031) P2.7(ALS)
(TO)P3.4 14 P2.6(A14)
(T1P3.5 15 P2.5(A13)
(-WR)P3.6 16 P24(A12)
(-RD)P3.7 17 P2.3(Al1)
XTAL2 18 P2.2(A10)

XTALI 19 P2.1(A9)

GND 20 P2.0(A8)

Provides +5V supply
voltage to the chip

PIN A total of 32
Ins are set
DESCRIPTION g P" \
: aside for the oo = yr)
(cont’) four ports PO, - — > 39 3 p0.0(AD0))
P1, P2, P3, P12 3 gg —1 P0.1(AD])
P0O.2(AD2
where cach port [NESINGIEE=F = .
takes 8 pins P15 = 6 35 [PO.4(AD4)
Pl.o 1 7 34 1 P0.5(AD5)
= H =
Vce, GND, XTALL, ((RXD)PB.O — 0 (DS39C4x0 31 =1 -EA/VPP
XTAL2, RST, -EA axDp3.1 == 11 AT89CS51 30 =1 ALE/PROG
(INTO)P3.2] 12 8031 29 —1 /PSEN ~N
are used by all pg < (NP = 1 VRN XD
members of 8051 and (TOP3.4 = 14 27 P26(AL4)
4 (THP3.5] 15 26 P2.5(A13)
8031 families (WR)P3.6 T—1 16 25 P2.4(Ag) > P2
= 2 B il
XTALI =1 19 22 P2.1(A9)

-PSEN and ALE are used

mainly in 8031-baded systems

PIN
DESCRIPTION

XTAL1 and

O
(8031)

o The 8051 has an on-chip oscillator but
requires an external clock to run it

» A quartz crystal oscillator is connected to
iInputs XTAL1 (pin19) and XTALZ2 (pinl8)

» The quartz crystal oscillator also needs two
capacitors of 30 pF value

) |T XTAL2
30pF 0

Cl I
®) | XTALI

AL GND

o If you use a frequency source other
than a crystal oscillator, such as a TTL
oscillator

XTAL1 and > It will be connected to XTAL1

» XTALZ2 is left unconnected

PIN
DESCRIPTION

NC XTAL2

EXTERNAL
OSCILLATOR XTALI
SIGNAL

GND

O
(8031)

PIN
DESCRIPTION

XTAL1 and

O
(8031)

o The speed of 8051 refers to the
maximum osclillator frequency
connected to XTAL

» ex. A 12-MHz chip must be connected to a
crystal with 12 MHz frequency or less

» We can observe the frequency on the
XTALZ2 pin using the oscilloscope

o RESET pin is an input and is active
high (normally low)

» Upon applying a high pulse to this pin, the
microcontroller will reset and terminate all
activities

* This is often referred to as a power-on reset

= Activating a power-on reset will cause all values
In the registers to be lost

RESET value of some — - v
8051 registers egister eset Value

PIN
DESCRIPTION

RST

PC — 0000

we must place DPTR 0000

) the first line of ACC 00
7 8051 i

(8031) ancl;Ir\‘/:leI COth_) & 5 PSW 00

n
ocatio P 07
B 00

PO-P3 FF

bIN o In order for the RESET Input to be
DESCRIPTION effect_lve, It must hf_alve a minimum
duration of 2 machine cycles
RST » In other words, the high pulse must be

high for a minimum of 2 machine cycles
before it is allowed to go low

Power-on RESET circuit Power-on RESET with debounce
VCCT Vcce T
ol

|

— 10 uF

7 8051
(8031)

o EA, “external access”, Is an input pin
and must be connected to Vcc or GND

» The 8051 family members all come with
EA on-chip ROM to store programs
= -EA pin is connected to Vcc

» The 8031 and 8032 family members do no
have on-chip ROM, so code is stored on
an external ROM and is fetched by
8031/32

= -EA pin must be connected to GND to indicate
that the code is stored externally

PIN
DESCRIPTION

o The following two pins are used mainly
In 8031-based systems

o PSEN, “program store enable”, is an

PSEN And ALE [EERSSLIbIaYlY
» This pin Is connected to the OE pin of the
ROM

o ALE, “address latch enable”, Is an
output pin and is active high

» Port O provides both address and data

= The 8031 multiplexes address and data through
port O to save pins

ALEIFROG » ALE pin is used for demultiplexing the address
and data by connecting to the G pin of the
741L.S373 chip

PIN
DESCRIPTION

a The four 8-bit 1/0 ports PO, P1, P2 and
P3 each uses 8 pins

a All the ports upon RESET are
1/0 Port Pins configured as output, ready to be used
as input ports

PIN
DESCRIPTION

39 P0.0(ADO)

33 PO.1(AD1)

37 P0.2(AD2)

361 P0.3(AD3)

35 P0.4(AD4)

343 P0.5(ADS)

2; =1 P0.6(AD6)
8051 P0O.7(AD7)

77 P26(A121)
2088 P25(A13)

283 P2. 3(A11;
23 PZZ(A}O

PIN
DESCRIPTION

Port O

9= P0.0(ADO)
%8).1(£

2; = 6(AD6)
2051 = P0.7(AD7)

(8031)

o Port O Is also designated as ADO-AD?,
allowing it to be used for both address
and data

» When connecting an 8051/31 to an
external memory, port O provides both
address and data

» The 8051 multiplexes address and data
through port O to save pins

> ALE Indicates if PO has address or data
= When ALE=0, it provides data DO-D7
= When ALE=1, it has address AO-A7

o It can be used for input or output,
each pin must be connected externally
to a 10K ohm pull-up resistor

Port O » This is due to the fact that PO is an open
(cont’) drain, unlike P1, P2, and P3

» Open drain is a term used for MOS chips in the
same way that open collector is used for TTL

PIN
DESCRIPTION

chips
% s22= =210k
9= PO.0(ADD)
%8 PO.1(ADD
3 P0.0
B3 POAADY PO.1
nggggg 8051/52 P0.2 . U
P0.7(AD7) PO.3 . o
PO.4 . —
P0.5 o o

P0.6 .
PO.7 —

o In 8051-based systems with no
external memory connection
» Both P1 and P2 are used as simple 1/0

L LSRR o |n 8031/51-based systems with
external memory connections

» Port 2 must be used along with PO to
provide the 16-bit address for the external
memory

»= PO provides the lower 8 bits via A0 — A7

7 = P2 is used for the upper 8 bits of the 16-bit
8051 address, designated as A8 — A15, and it cannot
5D B s be used for 1/0

P2.6(A14)
268 P2 S(Al)

283 P2. 3(A11;
23 PZZ(A}O

PIN
DESCRIPTION

. o Port 3 can be used as input or output
DESCRIPTION » Port 3 does not need any pull-up resistors

o Port 3 has the additional function of
Port 3 providing some extremely important
signals

P3 Bit Function Pin :
Serial
P3.0 RxD 10 > / communications
P3.1 TxD 11
External
P3.2 INTO 12 ! / Interrupts
P3.3 INT1 13

P3.5 T1 15

P3.6 WR 16 of external memories
P3.7 RD 17

J

J\.

J\.

J \\

Read/Write signals

o Intel hex file is a widely used file
EXPLAINING

INTEL HEX [
FILE > Designed to standardize the loading of

executable machine codes into a ROM chip
o Loaders that come with every ROM
ourner (programmer) support the Intel
nex file format

» In many newer Windows-based
assemblers the Intel hex file is produced
automatically (by selecting the right
setting)

» In DOS-based PC you need a utility called
OH (object-to-hex) to produce that

o In the DOS environment
EXPLAINING

INTEL HEX > The object file is fed into the linker
FILE program to produce the abs file

(cont) = The abs file is used by systems that have a
monitor program

» Then the abs file is fed into the OH utility
to create the Intel hex file

* The hex file is used only by the loader of an
EPROM programmer to load it into the ROM
chip

The location is the address where the
INE opcodes (object codes) are placed

LOC_ OBJ L
0000 1 ORG OH
EXPLAINING e - 1N LT MOV PO ,#55H
INTEL HEX 0003 759055 3 MOV P1,#55H
FILE 0006 75A055 4 MOV P2 ,#55H
, 0009 7DFA 5 MOV R5,#250
(cont’) 000B 111C 6 ACALL MSDELAY
000D 7580AA 7 MOV PO ,#0AAH
0010 7590AA 8 MOV P1,#O0AAH
0013 75A0AA 9 MOV P2 ,#0AAH
0016 7DFA 10 MOV R5,#250
0018 111C 11 ACALL MSDELAY
001A 80E4 12 SIMP MAIN
13 :-—- THE 250 MILLISECOND DELAY.
14 MSDELAY:

001C 7C23 15 HERES3: MOV R4 ,#35
OO1E 7/B4F 16 HEREZ2: MOV R3,#79
0020 DBFE 17 HERE1: DINZ R3,HERE1l

0022 DCFA 18 DINZ R4 ,HEREZ2
0024 DDF6 19 DJINZ R5,HERE3
0026 22 20 RET

21 END

o The hex file provides the following:
EXPLAINING

INTEL HEX » The number of bytes of information to be
CILE loaded

(cont) » The information itself

» The starting address where the
Information must be placed

:10000000[/5805575905575A0557DFA111C7580AA9F
:10001000/590AA7SA0AATDFA111C80E47C237B4F01
:07002000DBFEDCFADDF62235

:00000001FF

:CC AAAA TT |\DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD SS
10 0000 00 |75805575905575A0557DFA111C7580AA 9F
10 0010 00 |7590AA75A0AA7DFA111C80E4/7/C237B4F 01
07 0020 OO |DBFEDCFADDF622 35
00 0000 01 |FF

Each line starts with a colon Type —

00, there are more

—

_ line and the
(cont)) places the first byte of data loading should
Into this memory address stop after this line

EXPLAINING Count byte — how many bytes, lines to come after
INTEL HEX 00 to 16, are in the line this line
) 01, this is the last
FILE 16-bit address — The loader

-CC AAAA TT DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD SS
10 0000 00 7580557590557H5A0557DFA111C7580AA 9F
10 0010 00 7590AA75A0 DFA111C80E4/7/C237B4F (1
07 0020 00 DBFEDCFADDFp22)
00 0000 01 FF

7/

Real information (data or code) — There is a maximum
of 16 bytes in this part. The loader places this
information into successive memory locations of ROM

Single byte — this last byte is the checksum
byte of everything in that line

EXPLAINING
INTEL HEX

FILE
(cont’)

Example 8-4

Verify the checksum byte for line 3 of Figure 8-9. Verify also that
the information is not corrupted.

Solution:
-07 0020 00 DBFEDCFADDF622 3

07+00+20+00+DB+FE+DC+FA+DD+F6+22=5CBH

. /
Dropping the carry 5 CBH
2’s complement il

If we add all the information including the checksum byte, and drop
the carries, we get 00.

5CBH + 35H = 600H

TIMER PROGRAMMING

The 8051 Microcontroller and Embedded
Systems. Using Assembly and C
Mazidi, Mazidi and McKinlay

Chung-Ping Young
TRl

a The 8051 has two timers/counters,
PROGRAMMING th b d eith
TIMERS ey Can pe used eltner as
» Timers to generate a time delay or as

» Event counters to count events happening
outside the microcontroller

o Both Timer O and Timer 1 are 16 bits
wide
> Since 8051 has an 8-bit architecture, each

16-bits timer is accessed as two separate
registers of low byte and high byte

o Accessed as low byte and high byte

» The low byte register is called TLO/TL1
and

» The high byte register is called THO/TH1

» Accessed like any other register
= MOV TLO,#4FH

= MOV R5,THO
THO TLO

PROGRAMMING
TIMERS

Timer0 & 1
Registers

o Both timers 0 and 1 use the same
PROGRAMMING

TIMERS register, ca_lled T_I\/IOD (timef mode), to
set the various timer operation modes

TMOD o TMOD is a 8-bit register
Register

> The lower 4 bits are for Timer O
» The upper 4 bits are for Timer 1

> In each case,
= The lower 2 bits are used to set the timer mode
* The upper 2 bits to specify the operation

(MSB) (LSB)

Timerl Timer0

PROGRAMMING
TIMERS

TMOD
Register
(cont’)

Gating control when set.
Timer/counter is enable
only while the INTX pin is

high and the TRx control
pin is set

When cleared, the timer is
enabled whenever the TRX
control bit is set

Timerl

(LSB)

TimerQ

Mode Operating Mode

0 0 0 13-bit timer mode
8-bit timer/counter THx with TLXx as 5-bit
prescaler

0 1 1 16-bit timer mode
16-bit timer/counter THx and TLx are
cascaded; there is no prescaler

1 0 2 8-bit auto reload
8-bit auto reload timer/counter; THx holds a
value which is to be reloaded TLx each time
it overfolws

1 1 3 Split timer mode

sl Timer or counter selected

Cleared for timer operation (input from internal

system clock)

Set for counter operation (input from Tx input pin)

PROGRAMMING
TIMERS

TMOD

Register
(cont’)

Example 9-1
Indicate which mode and which timer are selected for each of the following.
(@ MOV TMOD, #01H (b) MOV TMOD, #20H (c) MOV TMOD, #12H

Solution:

We convert the value from hex to binary. From Figure 9-3 we have:

(a) TMOD = 00000001, mode 1 of timer 0O is selected.

(b) TMOD =00100000, mode 2 of timer 1 is selected.

(c) TMOD = 00010010, mode 2 of timer 0, and mode 1 of timer 1 are
selected.

If C/T =0, itis used

—

as a timer for time
delay generation.
The clock source for
the time delay is the
crystal frequency of
the 8051

Example 9-2

Find the timer’s clock frequency and its per arious 8051-based system,
with the crystal frequency 11.0592 MHz when C/T bit of TMOD is 0.

Solution:

+12

XTAL
oscillator

1/12 x 11.0529 MHz = 921.6 MHz,
T=1/921.6 kHz =1.085 us

o Timers of 8051 do starting and stopping
by either software or hardware control

> In using software to start and stop the timer
where GATE=0

* The start and stop of the timer are controlled by
TMOD way of software by the TR (timer start) bits TRO

Register and TR1
— The SETB instruction starts it, and it is

stopped by the CLR instruction

— These instructions start and stop the timers

as long as GATE=0 in the TMOD reqister
» The hardware way of starting and stopping
the timer by an external source is achieved

* Timer 0, mode 2 Nmaking GATE=1 in the TMOD register

e C/T =0touse

PROGRAMMING
TIMERS

GATE

XTAL clock source Find the value TokTMOD if we want to program timer 0 in mode 2,

e gate = 0 to use use 8051 XTAL the clock source, and use instructions to start

internal (software) start and stop the timer.
and stop method.
TMOD = 0000 0010

PROGRAMMING
TIMERS

Mode 1
Programming

o The following are the characteristics
and operations of model.:
1. Itis a 16-bit timer; therefore, it allows

value of 0000 to FFFFH to be loaded into
the timer’s register TL and TH

2. After TH and TL are loaded with a 16-bit
Initial value, the timer must be started

= This is done by SETB TRO for timer 0 and
SETB TR1 for timer 1

3. After the timer Is started, It starts to
count up

= |t counts up until it reaches its limit of FFFFH

e IR —D N - G
oscillator :
TR TF goes high Overflow

C/IT=0 when FFFF — 0 flag

PROGRAMMING
TIMERS

Mode 1

Programming
(cont’)

3. (cont’)

= When it rolls over from FFFFH to 0000, it sets
high a flag bit called TF (timer flag)
— Each timer has its own timer flag: TFO for
timer 0, and TF1 for timer 1
— This timer flag can be monitored

= When this timer flag is raised, one option
would be to stop the timer with the
instructions CLR TRO or CLR TR1, for timer O
and timer 1, respectively
4. After the timer reaches its limit and rolls
over, in order to repeat the process

» TH and TL must be reloaded with the original
value, and

= TF must be reloaded to O

XTAL
oscillator
TR

EL%H

TF goes high Overflow
when FFFF — 0 flag

C/T=0

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program

o To generate a time delay

1.

Load the TMOD value register indicating
which timer (timer O or timer 1) is to be
used and which timer mode (O or 1) is
selected

Load registers TL and TH with initial count
value

Start the timer

Keep monitoring the timer flag (TF) with
the JNB TFx,target instruction to see

If it Is raised

= Get out of the loop when TF becomes high
Stop the timer

Clear the TF flag for the next round

Go back to Step 2 to load TH and TL
again

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program
(cont’)

Example 9-4

In the following program, we create a square wave of 50% duty cycle (with
equal portions high and low) on the P1.5 bit. Timer O is used to generate the
time delay. Analyze the program

MOV TMOD,#01 ;Timer O, mode 1(16-bit mode)
HERE: MOV TLO,#0F2H ;TLO=F2H, the low byte

MOV THO,#0OFFH ;THO=FFH, the high byte

CPL P1.5 ;toggle P1.5

ACALL DELAY

SIMP HERE

In the above program notice the following step.

1. TMOD is loaded.

2. FFF2H is loaded into THO-TLUO.

3. P1.5is toggled for the high and low portions of the pulse.

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program
(cont’)

Example 9-4 (cont’)

DELAY:
SETB TRO ;start the timer O
AGAIN: JNB TFO,AGAIN ;monitor timer flag O
;until 1t rolls over

CLR TRO ;stop timer O
CLR TFO ;clear timer 0 flag
RET

4. The DELAY subroutine using the timer is called.

5. In the DELAY subroutine, timer 0 is started by the SETB TRO instruction.

6. Timer O counts up with the passing of each clock, which is provided by the
crystal oscillator. As the timer counts up, it goes through the states of FFF3,
FFF4, FFF5, FFF6, FFF7, FFF8, FFF9, FFFA, FFFB, and so on until it
reaches FFFFH. One more clock rolls it to 0, raising the timer flag (TF0=1).
At that point, the JNB instruction falls through.

TF=0 TF=0 TF=0 TF=1
7. Timer O is stopped by the instruction CLR TRO. The DELAY subroutine
ends, and the process is repeated.

Notice that to repeat the process, we must reload the TL and TH registers, and
start the process is repeated

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program
(cont’)

Example 9-5
In Example 9-4, calculate the amount of time delay in the DELAY
subroutine generated by the timer. Assume XTAL = 11.0592 MHz.

Solution:

The timer works with a clock frequency of 1/12 of the XTAL
frequency; therefore, we have 11.0592 MHz / 12 = 921.6 kHz as the
timer frequency. As a result, each clock has a period of T =
1/921.6kHz = 1.085us. In other words, Timer 0 counts up each 1.085
us resulting in delay = number of counts x 1.085us.

The number of counts for the roll over is FFFFH — FFF2H = ODH (13
decimal). However, we add one to 13 because of the extra clock
needed when it rolls over from FFFF to 0 and raise the TF flag. This
gives 14 x 1.085us = 15.19us for half the pulse. For the entire period it
Is T =2 x 15.19us = 30.38us as the time delay generated by the timer.

(@) inhex

(FFFF - YYXX + 1) x
1.085 us, where YY XX
are TH, TL initial
values respectively.

(b) indecimal
Convert YY XX values
of the TH, TL register
to decimal to get a
NNNNN decimal, then
(65536 - NNNN) x
1.085 us

Notice that value
YY XX are in hex.

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program
(cont’)

Example 9-6
In Example 9-5, calculate the frequency of the square wave generated
on pin P1.5.

Solution:

In the timer delay calculation of Example 9-5, we did not include the
overhead due to instruction in the loop. To get a more accurate timing,
we need to add clock cycles due to this instructions in the loop. To do
that, we use the machine cycle from Table A-1 in Appendix A, as
shown below.

Cycles
HERE: MOV TLO,#0F2H
MOV THO,#OFFH
CPL P1.5
ACALL DELAY
SIJMP HERE
DELAY:

SETB TRO
AGAIN: JNB TFO,AGAIN
CLR TRO
CLR TFO

RET

=
NFRrRFRRA~E NNEFEDNDN

Total 28
T=2x28x1.085us=60.76 us and F = 16458.2 Hz

Example 9-7
Find the delay generated by timer 0 in the following code, using both
HNOICLREWIIINER | of the Methods of Figure 9-4. Do not include the overhead due to

TIMERS instruction.
CLR P2.3 -Clear P2.3
Mode 1 MOV TMOD,#01 ;Timer O, 16-bitmode
HERE: MOV TLO,#3EH ;TLO=3Eh, the low byte
Programming MOV THO,#0B8H ;THO=B8H, the high byte
SETB P2.3 ;SET high timer O
SETB TRO :Start the timer O
SICIOSRONV oI | AGAIN: JNB TFO,AGAIN ;Monitor timer flag O
Program CLR TRO ;Stop the timer O
(cont’) CLR TFO .Clear TFO for next round
CLR P2.3

Solution:

(a) (FFFFH —B83E + 1) =47C2H = 18370 in decimal and 18370 x
1.085 us =19.93145 ms

(b) Since TH - TL = B83EH = 47166 (in decimal) we have 65536 —
47166 = 18370. This means that the timer counts from B38EH to
FFFF. This plus Rolling over to 0 goes through a total of 18370 clock
cycles, where each clock is 1.085 us in duration. Therefore, we have
18370 x 1.085 us = 19.93145 ms as the width of the pulse.

Example 9-8

Modify TL and TH in Example 9-7 to get the largest time delay

MNOEIRVAVIVIINER | possible. Find the delay in ms. In your calculation, exclude the
TIMERS overhead due to the instructions in the loop.

Solution:
Mode 1 To get the largest delay we make TL and TH both 0. This will count
ode up from 0000 to FFFFH and then roll over to zero.

Programming CLR P2.3 :Clear P2.3

MOV TMOD,#01 ;Timer 0, 16-bitmode
Steps to Mode 1 HERE: MOV TLO,#0 ;TLO=0, the low byte
MOV THO,#0 ;THO=0, the high byte

PICETELT SETB P2.3 :SET high P2.3
(cont’) SETB TRO -Start timer O
AGAIN: JNB TFO,AGAIN ;Monitor timer flag O
CLR TRO ;Stop the timer O
CLR TFO ;Clear timer 0 flag
CLR P2.3

Making TH and TL both zero means that the timer will count from
0000 to FFFF, and then roll over to raise the TF flag. As a result, it
goes through a total Of 65536 states. Therefore, we have delay =
(65536 - 0) x 1.085 us = 71.1065m:s.

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program
(cont’)

Example 9-9

The following program generates a square wave on P1.5 continuously
using timer 1 for a time delay. Find the frequency of the square
wave if XTAL =11.0592 MHz. In your calculation do not
include the overhead due to Instructions in the loop.

MOV TMOD,#10;Timer 1, mod 1 (16-bitmode)
AGAIN: MOV TL1,#34H ;TL1=34H, low byte of timer
MOV TH1,#76H ;TH1=76H, high byte timer

SETB TR1 ;start the timer 1

BACK: JNB TF1,BACK ;till timer rolls over
CLR TR1 ;stop the timer 1
CPL P1.5 ;comp. pl. to get hi, lo
CLR TF1 ;clear timer flag 1

SIJMP AGAIN 1S not auto-reload

Solution:

Since FFFFH — 7634H = 89CBH + 1 = 89CCH and 89CCH = 35276
clock count and 35276 x 1.085 us = 38.274 ms for half of the
square wave. The frequency = 13.064Hz.

Also notice that the high portion and low portion of the square wave
pulse are equal. In the above calculation, the overhead due to all
the instruction in the loop is not included.

PROGRAMMING
TIMERS

Mode 1
Programming

Finding the
Loaded Timer
Values

o To calculate the values to be loaded
Into the TL and TH registers, look at
the following example

> Assume XTAL = 11.0592 MHz, we can
use the following steps for finding the TH,
TL registers’ values
1. Divide the desired time delay by 1.085 us

2. Perform 65536 — n, where n is the decimal
value we got in Stepl

3. Convert the result of Step2 to hex, where
yyxx Is the initial hex value to be loaded into
the timer’s register

4. Set TL =xx and TH = vyy

PROGRAMMING
TIMERS

Mode 1
Programming

Finding the
Loaded Timer
Values
(cont’)

Example 9-10

Assume that XTAL =11.0592 MHz. What value do we need to load
the timer’s register if we want to have a time delay of 5 ms
(milliseconds)? Show the program for timer 0 to create a pulse width
of 5 ms on P2.3.

Solution:

Since XTAL =11.0592 MHz, the counter counts up every 1.085 us.
This means that out of many 1.085 us intervals we must make a 5 ms
pulse. To get that, we divide one by the other. We need 5 ms/ 1.085
us = 4608 clocks. To Achieve that we need to load into TL and TH
the value 65536 — 4608 = EEOOH. Therefore, we have TH = EE and
TL = 00.

CLR P2.3 -Clear P2_.3

MOV TMOD,#01 ;Timer O, 16-bitmode
HERE: MOV TLO,#0 ;TLO=0, the low byte

MOV THO,#0OEEH ;THO=EE, the high byte

SETB P2.3 ;SET high P2.3
SETB TRO ;Start timer O

AGAIN: JNB TFO,AGAIN ;Monitor timer flag O
CLR TRO ;Stop the timer O

CLR TFO ;Clear timer 0 flag

PROGRAMMING
TIMERS

Mode 1
Programming

Finding the
Loaded Timer
Values
(cont’)

Example 9-11
Assume that XTAL =11.0592 MHz, write a program to generate a
square wave of 2 kHz frequency on pin P1.5.

Solution:

This is similar to Example 9-10, except that we must toggle the bit to
generate the square wave. Look at the following steps.

(@ T=1/f=1/2kHz =500 us the period of square wave.

(b) 1/2ofitfor the high and low portion of the pulse is 250 us.

(c) 250us /1.085 us =230 and 65536 — 230 = 65306 which in hex
is FF1AH.

(d) TL=1Aand TH = FF, all in hex. The program is as follow.

MOV TMOD,#01 ;Timer O, 16-bitmode
AGAIN: MOV TL1,#1AH ;TL1=1A, low byte of timer
MOV TH1,#OFFH ;TH1=FF, the high byte

SETB TR1 ;Start timer 1
BACK: JNB TF1,BACK ;until timer rolls over
CLR TR1 ;Stop the timer 1
CLR P1.5 ;Clear timer flag 1
CLR TF1 ;Clear timer 1 flag

SIMP AGAIN -Reload timer

PROGRAMMING
TIMERS

Mode 1
Programming

Finding the
Loaded Timer
Values
(cont’)

Example 9-12
Assume XTAL =11.0592 MHz, write a program to generate a square
wave of 50 kHz frequency on pin P2.3.

Solution:

Look at the following steps.

(@) T=1/50= 20 ms, the period of square wave.

(b) 1/ 2 ofitfor the high and low portion of the pulse is 10 ms.

(c) 10ms /1.085 us =9216 and 65536 — 9216 = 56320 in decimal,
and in hex it is DCOOH.

(d) TL =00and TH = DC (hex).

MOV TMOD,#10H ;Timer 1, mod 1
AGAIN: MOV TL1,#00 ;TL1=00, low byte of timer
MOV TH1,#0DCH ;TH1=DC, the high byte

SETB TR1 ;Start timer 1

BACK: JNB TF1,BACK ;until timer rolls over
CLR TR1 ;Stop the timer 1
CLR P2.3 ;Comp. p2.3 to get hi, lo
SIMP AGAIN -Reload timer

-mode 1 isn’t auto-reload

PROGRAMMING
TIMERS

Mode 1
Programming

Generating Large
Time Delay

Example 9-13
Examine the following program and find the time delay in seconds.
Exclude the overhead due to the instructions in the loop.

MOV TMOD,#10H ;Timer 1, mod 1

MOV R3,#200 ;cnter for multiple delay
AGAIN: MOV TL1,#08H ;TL1=08,low byte of timer

MOV TH1,#01H ;TH1=01,high byte

SETB TR1 ;Start timer 1

BACK: JNB TF1,BACK ;until timer rolls over
CLR TR1 ;Stop the timer 1
CLR TF1 ;clear Timer 1 flag

DIJNZ R3,AGAIN ;1f R3 not zero then
-reload timer
Solution:
TH-TL = 0108H = 264 in decimal and 65536 — 264 = 65272. Now
65272 x 1.085 us = 70.820 ms, and for 200 of them we have
200 x70.820 ms = 14.164024 seconds.

PROGRAMMING
TIMERS

Mode 2
Programming

o The following are the characteristics
and operations of mode 2:

1.

2.

3.

It is an 8-bit timer; therefore, it allows
only values of 00 to FFH to be loaded
Into the timer’s register TH

After TH is loaded with the 8-bit value,

the 8051 gives a copy of it to TL

= Then the timer must be started

* This is done by the instruction SETB TRO for
timer O and SETB TR1 for timer 1

After the timer Is started, It starts to

count up by incrementing the TL register

* |t counts up until it reaches its limit of FFH

= When it rolls over from FFH to 00, it sets high
the TF (timer flag)

PROGRAMMING
TIMERS

Mode 2

Programming
(cont’)

4. When the TL register rolls from FFH to O
and TF is setto 1, TL is reloaded
automatically with the original value kept
by the TH regqister
= To repeat the process, we must simply clear

TF and let it go without any need by the
programmer to reload the original value

= This makes mode 2 an auto-reload, in
contrast with mode 1 in which the
programmer has to reload TH and TL

i

Overflow
XTAL _
_ . — = flag
oscillator

C/IT=0 TR Relload TF goes high
when FF - 0

PROGRAMMING
TIMERS

Mode 2
Programming

Steps to Mode 2
Program

o To generate a time delay

1.

Load the TMOD value register indicating
which timer (timer O or timer 1) is to be
used, and the timer mode (mode 2) Is
selected

Load the TH registers with the initial
count value

Start timer

Keep monitoring the timer flag (TF) with
the JNB TFx,target instruction to see
whether it is raised

= Get out of the loop when TF goes high
Clear the TF flag

Go back to Step4, since mode 2 Is auto-
reload

Example 9-14
PROGRAMMING Assume XTAL =11.0592 MHz, find the frequency of the square

TIMERS wave generated on pin P1.0 in the following program
MOV TMOD,#20H ;T1/8-bit/auto reload
Mode 2 MOV TH1,#5 ;TH1 = 5
- SETB TR1 ;start the timer 1
Programmmg BACK: JNB TF1,BACK ;till timer rolls over
CPL P1.0 ;P1.0 to hi, lo
Steps to Mode 2 CLR TF1 -clear Timer 1 flag
Program SIJMP BACK -mode 2 is auto-reload

(cont’)

Solution:

First notice the target address of SIMP. In mode 2 we do not need to
reload TH since it is auto-reload. Now (256 - 05) x 1.085 us =
251 x 1.085 us = 272.33 us is the high portion of the pulse. Since
it is a 50% duty cycle square wave, the period T is twice that; as
aresult T =2 x 272.33 us = 544.67 us and the frequency =
1.83597 kHz

PROGRAMMING
TIMERS

Mode 2
Programming

Steps to Mode 2
Program
(cont’)

Example

9-15

Find the frequency of a square wave generated on pin P1.0.

Solution:

AGAIN:

DELAY:
BACK:

MOV

MOV
MOV
ACALL
CPL
SIMP

SETB
JNB
CLR
CLR
DINZ
RET

TMOD , #2H

THO,#0
R5,#250
DELAY
P1.0
AGAIN

TRO
TFO,BACK
TRO
TFO
R5,DELAY

;Timer O, mod 2
;(8-bit, auto reload)

;multiple delay count

;start the timer O

,Stay timer rolls over
;Sstop timer

;clear TF for next round

T =2 (250 x 256 x 1.085 us) = 138.88ms, and frequency = 72 Hz

PROGRAMMING
TIMERS

Mode 2
Programming

Steps to Mode 2
Program
(cont’)

The number 200 is the
timer count till the TF

Issetto 1

Example 9-16
Assuming that we are programming the timers for mode 2, find the
value (in hex) loaded into TH for each of the following cases.

() MOV TH1,#-200
() MOV TH1,#-3
(€) MOV THO,#-48

(b) MOV
(d) MOV

THO,#-60
TH1,#-12

Solution:

You can use the Windows scientific calculator to verify the result
provided by the assembler. In Windows calculator, select
decimal and enter 200. Then select hex, then +/- to get the TH
value. Remember that we only use the right two digits and ignore
the rest since our data is an 8-bit data.

Decimal 2’s complement (TH value)
-3 FDH
-12 /EAH/_ The advantage of using
-48 DOH negative values is that you
-60 C4H don’t need to calculate the
200 38H value loaded to THx

o Timers can also be used as counters
counting events happening outside the
8051

» When it Is used as a counter, it is a pulse
outside of the 8051 that increments the
TH, TL registers

» TMOD and TH, TL reqgisters are the same
as for the timer discussed previously
o Programming the timer in the last
section also applies to programming it
as a counter
» Except the source of the frequency

COUNTER
PROGRAMMING

o The C/T bit in the TMOD registers
decides the source of the clock for the
timer

C/T Bit in > When C/T = 1, the timer is used as a

TMOD Register counter and gets its pulses from outside
the 8051

= The counter counts up as pulses are fed from
pins 14 and 15, these pins are called TO (timer
0 input) and T1 (timer 1 input)

COUNTER
PROGRAMMING

Port 3 pins used for Timers 0 and 1

Pin Port Pin Function Description

14 P3.4 T0 Timer/counter 0 external input

15 P3.5 T1 Timer/counter 1 external input

Example 9-18

Assuming that clock pulses are fed into pin T1, write a program
COUNTER for counter 1 in mode 2 to count the pulses and display the state

PROGRAMMING of the TL1 count on P2, which connects to 8 LEDs.

Solution:
+ MOV TMOD,#01100000B ;counter 1, mode 2,
C/T Bit I_n ,C/T=1 external pulses
TMOD Register MOV~ TH1,#0 ;clear TH1
(cont) SETB P3.5 ;make T1 1nput
AGAIN: SETB TR1 .start the counter

BACK: MOV A,TL1 ;get copy of TL
MOV P2,A ;display 1t on port 2
JNB TF1,Back ;keep doing, 1f TF = 0
CLR TR1 ;stop the counter 1
CLR TF1 ;make TF=0
SIJMP AGAIN ;keep doing i1t

Notice in the above program the role of the instruction SETB P3.5.
Since ports are set up for output when the 8051 is powered up,
we make P3.5 an input port by making it high. In other words,
we must configure (set high) the T1 pin (pin P3.5) to allow
pulses to be fed into it.

COUNTER
PROGRAMMING

C/T Bit In

TMOD Register
(cont’)

Timer with external input (Mode 1)

Timer Overflow
external | I | | flag
input pin ——
3.40r 35 F}_’ ;
C/T=1 TR TF goes high

when FFFF - 0

Timer with external input (Mode 2)

Timer Overflow
external | I | | flag

input pin ———
3.40r3.5

CiT=1

TR Reload TF goes high
when FF - 0

o TCON (timer control) register is an 8-
COUNTER bit regist
PROGRAMMING [REERA Sl

TCON: Timer/Counter Control Register

TCON
Register TF1 ‘ TR1 ‘ TFO ‘ TRO ‘ IE1 ‘ IT1 ‘ IEO ‘ ITO
— AN _/
' '

The upper four / /

bits are used to The lower 4 bits
store the TF and are set aside for

TR bits of both
timer O and 1

controlling the
interrupt bits

o TCON register Is a bit-addressable
register

COUNTER
PROGRAMMING

Equivalent instruction for the Timer Control Register

TCON For timer O
Register SETB TRO = SETB TCON.4
(cont’) CLR TRO = CLR TCON.4
SETB TFO = SETB TCON.5
CLR TFO = CLR TCON.5

For timer 1
SETB TR1 = SETB TCON.6
CLR TRL = CLR TCON.6
SETB TF1 = SETB TCON.7
CLR TF1L = CLR TCON.7

o If GATE = 1, the start and stop of the
timer are done externally through pins
P3.2 and P3.3 for timers 0 and 1,

TCON respectively

Register > This hardware way allows to start or stop
the timer externally at any time via a
simple switch

XTAL
. — |

COUNTER
PROGRAMMING

Case of GATE = 1

Tx Pin ~
Pin 3.4 or 3.5 C/T=1

e PP
INTO Pin

Pin 3.2 or 3.3

Example 9-20
Write an 8051 C program to toggle all the bits of port P1 continuously

PROGRAMMING with some delay in between. Use Timer 0, 16-bit mode to
TIMERS IN C generate the delay.
Soluticl)n:d .
: #include <reg5l1.h>
Accessing void TODelay(void);

IR EIRRELISEE | void main(void){
J while (1) {
P1=0x55;
TODelay();
P1=0xAA;
TODelay();

3oid TODelay(){

TMOD=0x01; ~ _
TLO:OxOM FFFFH — 3500H = CAFFH
THO=0x35; = 51967 + 1 = 51968

TRO=1; B .
while (TF0==0); 51968 X 1.085 us = 56.384 ms is the
TRO=0; approximate delay

TFO=0;

o To speed up the 8051, many recent
PROGRAMMING

TIMERS IN C versions of the 8051 have r_educed the
number of clocks per machine cycle

Calculating from 12 to four, or even one
Delay Length
Using Timers

o The frequency for the timer is always
1/12t™ the frequency of the crystal
attached to the 8051, regardless of the
8051 version

PROGRAMMING
TIMERS IN C

Times 0/1
Delay Using
Mode 1 (16-bit
Non Auto-

reload)

Example 9-21

Write an 8051 C program to toggle only bit P1.5 continuously every
50 ms. Use Timer 0, mode 1 (16-bit) to create the delay. Test the
program on the (a) AT89C51 and (b) DS89C420.

Solution:

#include <reg5l1l.h>

void TOM1Delay(void);

sbit mybit=P1"5;

void main(void){

while (1) {

mybit=~mybit;
TOM1Delay();

by

void TOM1Delay(void){
TMOD=0x01;
TLO:OXFB;,,————“ FFFFH - 4BFDH = B402H
THO=0x4B; _ _
TRO=1- = 46082 + 1 = 46083
while (TFO==0); 46083 x 1.085 us = 50 ms
TRO=0;
TFO=0;

PROGRAMMING
TIMERS IN C

Times 0/1
Delay Using
Mode 1 (16-bit
Non Auto-

reload)
(cont’)

Example 9-22
Write an 8051 C program to toggle all bits of P2 continuously every
500 ms. Use Timer 1, mode 1 to create the delay.

Solution:
//tested for DS89C420, XTAL = 11.0592 MHz
#include <reg5l1l.h>
void T1Ml1Delay(void);
void main(void){
unsigned char x;
P2=0x55;
while (1) {
P2=~P2;
for (X=0;x<20;x++)
y TiM1Delay();

by
void T1M1Delay(void){

TMOD=0x10; ; :
TL1=0XFE - A5FEH = 42494 in decimal

%%i‘i{@ : 65536 — 42494 = 23042
while (TF1==0); 23042 x 1.085 us = 25 ms and

TR1=0; —
TF1=0" 20 x 25 ms =500 ms

PROGRAMMING
TIMERS IN C

Times 0/1
Delay Using
Mode 1 (16-bit
Non Auto-

reload)
(cont’)

Example 9-25

A switch is connected to pin P1.2. Write an 8051 C program to
monitor SW and create the following frequencies on pin P1.7:
SW=0: 500Hz

SW=1: 750Hz, use Timer 0, mode 1 for both of them.

Solution:
#include <reg5l1l.h>
sbit mybi1t=P1"5;
sbit SW=P177;
void TOM1Delay(unsigned char);
void main(void){
SW=1;
while (1) {
mybit=~mybit;
1T (SW==0)
TOM1Delay(0);
else
TOM1Delay(1);

PROGRAMMING
TIMERS IN C

Times 0/1
Delay Using
Mode 1 (16-bit
Non Auto-

reload)
(cont’)

Example 9-25

void TOM1Delay(unsigned char c){
TMOD=0x01;
It (c==0) {

TLO=0x67 ;_— RESUzEELEIE

THO=0xFC; 65536 — 64615 = 921

}

else { 921 x 1.085 us = 999.285 us
TLO=0x9A;
THO=0xFD;

ks

TRO=1;

while (TF0==0);
TRO=0;

TFO=0;

1/(999.285 s x 2) = 500 Hz

PROGRAMMING
TIMERS IN C

Times 0/1
Delay Using
Mode 2 (8-hbit
Auto-reload)

Example 9-23

Write an 8051 C program to toggle only pin P1.5 continuously every
250 ms. Use Timer 0, mode 2 (8-bit auto-reload) to create the
delay.

Solution:

#include <reg5l1l.h>
void TOM2Delay(void);
sbit mybit=P1"5;

void main(void){ Due to overhead of the for loop

unsigned char x,y; : :
while (1) { in C, we put 36 instead of 40

mybit=~mybit;
for (X=0;x<250;x++)
for (y=0:;y<36;y++) //we put 36, not 40
TOM2Delay();

}

}

void TOM2Delay(void){
WSE:%?Z ’ 256 — 23 = 233
TRO=1; 23 x 1.085 us =25 ps and

VTVBBLS; (TF0==0): 25 15 x 250 x 40 = 250 Ms

TFO=0;

PROGRAMMING
TIMERS IN C

Times 0/1
Delay Using
Mode 2 (8-hbit
Auto-reload)

(cont’)

Example 9-24
Write an 8051 C program to create a frequency of 2500 Hz on pin
P2.7. Use Timer 1, mode 2 to create delay.

Solution:
#include <reg51.h>
void T1M2Delay(void);
sbit mybi1t=P277;
void main(void){
unsigned char Xx;
while (1) {
mybit=~mybit;
TiM2Delay();

+
void T1M2Delay(void){

TMOD=0x20; ~ — [RTZRWIPERI e
TH1=-184;

TR1=1; 400 ps /2 = 200 ps
while (TF1==0); 200 ps / 1.085 ps = 184
TR1=0;

TF1=0;

PROGRAMMING
TIMERS IN C

C Programming
of Timers as
Counters

Example 9-26

Assume that a 1-Hz external clock is being fed into pin T1 (P3.5).
Write a C program for counter 1 in mode 2 (8-bit auto reload) to count
up and display the state of the TL1 count on P1. Start the count at OH.

Solution:
#include <reg5l1l.h>
sbit T1=P3"5;
void main(void){
T1=1;
TMOD=0x60;
TH1=0;
while (1) {
do {
TR1=1;
P1=TL1;

+

while (TF1==0);
TR1=0;

TF1=0;

PROGRAMMING
TIMERS IN C

C Programming
of Timers as

Counters
(cont’)

Example 9-27

Assume that a 1-Hz external clock is being fed into pin TO (P3.4).
Write a C program for counter O in mode 1 (16-bit) to count the pulses
and display the state of the THO and TLO registers on P2 and P1,
respectively.

Solution:
#include <reg5l1l.h>
void main(void){
T0=1;
TMOD=0x05;
TLO=0
THO=0;
while (1) {
do {
TRO=1;
P1=TLO;
P2=THO;

+

while (TF0==0);
TRO=0;

TFO=0;

SERIAL COMMUNICATION

Chung-Ping Young
TRl

o Computers transfer data in two ways:
BASICS OF

SERIAL > Parallel
COMMUNICA- = Often 8 or more lines (wire conductors) are

used to transfer data to a device that is only a
few feet away
> Serial

» To transfer to a device located many meters
away, the serial method is used

= The data is sent one bit at a time

TION

Serial Transfer Parallel Transfer
DO

Receiver

Sender 4 Receiver Sender

VYVVVVVYVYVYY

D7

BASICS OF
SERIAL
COMMUNICA-

TION
(cont’)

o At the transmitting end, the byte of
data must be converted to serial bits
using parallel-in-serial-out shift register

o At the receiving end, there is a serial-
In-parallel-out shift register to receive
the serial data and pack them into byte

2 When the distance is short, the digital
signal can be transferred as it is on a
simple wire and requires no modulation

o If data Is to be transferred on the
telephone line, it must be converted
from Os and 1s to audio tones

» This conversion is performed by a device
called a modem, “Modulator/demodulator”

BASICS OF
SERIAL
COMMUNICA-

TION
(cont’)

o Serial data communication uses two
methods

» Synchronous method transfers a block of
data at a time

> Asynchronous method transfers a single
byte at a time

o It is possible to write software to use
either of these methods, but the
programs can be tedious and long

» There are special IC chips made by many
manufacturers for serial communications

= UART (universal asynchronous Receiver-
transmitter)

= USART (universal synchronous-asynchronous
Receiver-transmitter)

o If data can be transmitted and received,

BASICS OF it is a duplex transmission
SERIAL > If data transmitted one way a time, it is
COMMUNICA- referred to as half duplex
TION » If data can go both ways at a time, it is full
auplex
SEUEEGLA=M o This is contrast to s/impl/ex transmission

Duplex

Transmission [EEESTare e \ Receiver |

rarsmiver S
Half Duplex L/
—

Transmitter 4 Receiver
Receiver Transmitter

Full Duplex

a A protocol is a set of rules agreed by
BASICS OF both the sender and receiver on
SERIAL > How the data is packed
COMMUNICA- » How many bits constitute a character
TION > When the data begins and ends

o Asynchronous serial data
Start and Stop communication is widely used for
Bits character-oriented transmissions

> Each character Is placed in between start
and stop bits, this is called framing

> Block-oriented data transfers use the
synchronous method

o The start bit is always one bit, but the
stop bit can be one or two bits

o The start bit Is always a O (low) and the
BASICS OF stop bit(s) is 1 (high)

SERIAL
COMMUNICA- ASCII character “A” (8-bit binary 0100 0001)
TION « >
Start and Stop . IR

Bits space [S©P| o | 1 | o

(cont’)

0)]
-+
QD
=
~+
<
Q
=
~

Goes out first
The 0 (low) is

referred to as space The transmission begins with a

start bit followed by DO, the
LSB, then the rest of the bits
until MSB (D7), and finally,
the one stop bit indicating the
end of the character

When there is no
transfer, the signal

Is 1 (high), which is
referred to as mark

o Due to the extended ASCII characters,

BASICS OF 8-bit ASCII data is common
SERIAL > In older systems, ASCII characters were 7-
COMMUNICA- bit
TION o In modern PCs the use of one stop bit
IS standard
Start and Stop > In older systems, due to the slowness of
Bits the receiving mechanical device, two stop
(cont’) bits were used to give the device sufficient

time to organize itself before transmission
of the next byte

o Assuming that we are transferring a
BASICS OF text file of ASCII characters using 1

SERIAL stop bit, we have a total of 10 bits for
COMMUNICA- each character

TION » This gives 25% overhead, i.e. each 8-bit
character with an extra 2 bits

SeuepeRse 0 1IN some systems in order to maintain
Bits data integrity, the parity bit of the
(cont) character byte is included in the data

frame

» UART chips allow programming of the

parity bit for odd-, even-, and no-parity
options

o The rate of data transfer in serial data

BASICS OF communication is stated in Hps (bits per
SERIAL second)
Sl auZal 0 Another widely used terminology for
TION bps is baud rate
» It Is modem terminology and is defined as
Data Transfer the number of signal changes per second
Rate » In modems, there are occasions when a
single change of signal transfers several
bits of data

o As far as the conductor wire Is
concerned, the baud rate and bps are
the same, and we use the terms
Interchangeably

BASICS OF
SERIAL
COMMUNICA-
TION

Data Transfer
Rate

(cont’)

o The data transfer rate of given
computer system depends on
communication ports incorporated into
that system

> IBM PC/XT could transfer data at the rate
of 100 to 9600 bps

> Pentium-based PCs transfer data at rates as
high as 56K bps

> In asynchronous serial data communication,
the baud rate is limited to 100K bps

o An interfacing standard RS232 was set

BASICS OF by the Electronics Industries Association
SERIAL (EIA) in 1960
SRV 0 The standard was set long before the
TION advent of the TTL logic family, its input
and output voltage levels are not TTL
RS232 compatible
Standards > In RS232, a 1 is represented by -3 ~ -25 V,

while a O bit is +3 ~ +25 V, making -3 to
+3 undefined

RS232 DB-25 Pins

Pin Description Pin Description
BAS | CS OF 1 Protective ground 14 Secondary transmitted data
SER I AL 2 Transmitted data (TxD) 15 Transmitted signal element timing
3 Received data (RxD) 16 Secondary receive data
COM M U N I CA- 4 Request to send (-RTS) 17 Receive signal element timing
T I O N 5 Clear to send (-CTS) 18 Unassigned
6 Data set ready (-DSR) 19 Secondary receive data
7 Signal ground (GND) 20 Data terminal ready (-DTR)
R8232 8 Data carrier detect (-DCD) 21 Signal quality detector
Standal‘ds 9/10 Reserved for data testing 22 Ring indicator (RI)
(Cont’) 11 Unassigned 23 Data signal rate select
12 Secondary data carrier detect 24 Transmit signal element timing
13 Secondary clear to send 25 Unassigned

234 7 10111213
RS232 Connector DB-25 (!¢ 3 “IE p 710 i]
O ‘ChRRARAARANRRY O

141516 1718192021 2223 24 25

o Since not all pins are used in PC cables,

BASICS OF IBM introduced the DB-9 version of the
SERIAL serial 1/0 standard
COMMUNICA-
TION
Vals e Pin Description
RS232 [BEA |) 1 Data carrier detect (-DCD)
Standards <—> q ©e000LO) C) 2 Received data (RxD)
(cont) 2 \ c0o0o0 / 3 Transmitted data (TxD)
C '] 4 Data terminal ready (DTR)
TR 5 Signal ground (GND)
6 Data set ready (-DSR)
7 Request to send (-RTS)
8 Clear to send (-CTS)
9 Ring indicator (RI)

o Current terminology classifies data
BASICS OF communication equipment as

SERIAL > DTE (data terminal equipment) refers to
COMMUNICA- terminal and computers that send and
TION receive data

» DCE (data communication equipment)
refers to communication equipment, such
as modems

a The simplest connection between a PC
and microcontroller requires a minimum

of three pins, TxD, RxD, and ground

DTE DTE

Data
Communication

Classification

o DTR (data terminal ready)

BASICS OF » When terminal is turned on, it sends out
SERIAL signal DTR to indicate that it is ready for
COMMUNICA.- communication
TION o DSR (data set ready)
» When DCE is turned on and has gone
RS232 Pins through the self-test, it assert DSR to

Indicate that it is ready to communicate

o RTS (request to send)

» When the DTE device has byte to transmit,
It assert RTS to signal the modem that it
has a byte of data to transmit

a CTS (clear to send)

» When the modem has room for storing the
data it Is to receive, it sends out signal CTS
to DTE to indicate that it can receive the
data now

o DCD (data carrier detect)

BASICS OF » The modem asserts signal DCD to inform
SERIAL the DTE that a valid carrier has been
COMMUNICA.- detected and that contact between it and

TION the other modem is established

o RI (ring indicator)
RS232 Pins > An output from the modem and an input to
a PC indicates that the telephone is ringing

> It goes on and off in synchronous with the
ringing sound

(cont’)

2 A line driver such as the MAX232 chip is
8051 required to convert RS232 voltage
CONNECTION levels to TTL levels, and vice versa

USREZEZN 0 8051 has two pins that are used
specifically for transferring and
receiving data serially

» These two pins are called TxD and RxD and
are part of the port 3 group (P3.0 and P3.1)

» These pins are TTL compatible; therefore,
they require a line driver to make them
RS232 compatible

2 We need a line driver (voltage

8051 converter) to convert the R232's signals
CeNI=gNIONN to TTL voltage levels that will be
TO RS232 acceptable to 8051’'s TxD and RxD pins
16 P four capacitors
. — 1 MAX232
S I 6 o 8051
gz E : I+ P3.1] 11 11 MAX232
N T1lin {> Tlolnjt 2™ L =
" Rl-out <} R1in 13 > ;?('8 10 12
R lzm t > R;uz ' \ DB-9
° ou <} n 8/

_ MAX232 has two
RS232 side g i
sets of line drivers

—
—
[
@
Q
@
[ay

al

[

8051
CONNECTION
TO RS232

MAX233

o To save board space, some designers
use MAX233 chip from Maxim

» MAX233 performs the same job as MAX232
but eliminates the need for capacitors

> Notice that MAX233 and MAX232 are not
pin compatible

Vcce |

7
14 MAX233
12 15 8051

16

o MAX233

10

P3.1| 11 2
TxD 5 2|5
Tlin Tlout =
2 ' 5 4 3
Rlout R1in p3.0| 10 3
3 4 RXD
T2in T2o0ut

18

[y

1

R2out R2int

19

TTL side 6 9 RS232 side

1 AVAY

o To allow data transfer between the PC
SERIAL and an 8051 system without any error,
COMMUNICA- we must make sure that the baud rate
TION of 8051 system matches the baud rate
SeleV\YIYIIE] of the PC5 COM port

o Hyperterminal function supports baud
rates much higher than listed below

PC Baud Rates

110
150
300
600
1200
2400
4800
9600

19200 Baud rates supported by
486/Pentium I1BM PC BIOS

SERIAL
COMMUNICA-
TION

PROGRAMMING
(cont’)

TFissetto 1 every 12
ticks, so it functions as

a frequency divider

With XTAL = 11.0592 MHz, find the TH1 value needed to have the
following baud rates. (a) 9600 (b) 2400 (c) 1200

Solution:
The machine cycle frequency of 8051 = 11.0592 / 12 = 921.6 kHz,
and 921.6 kHz / 32 = 28,800 Hz is frequency by UART to timer 1 to
set baud rate.

(a) 28,800/ 3 =9600
(b) 28,800/ 12 = 2400
(c) 28,800/ 24 = 1200

where -3 = FD (hex) is loaded into TH1
where -12 = F4 (hex) is loaded into TH1
where -24 = E8 (hex) is loaded into TH1

Notice that dividing 1/12 of the crystal frequency by 32 is the default
value upon activation of the 8051 RESET pin.

11.0592 MHz
: 28800 Hz

il o Machine cycle freq: - 30 .
oscillator 921.6 kHz By UART I STk
To set the

Baud rate

Baud Rate TH1 (Decimal) TH1 (Hex)
9600 -3 FD
4800 ~_ 6 FA
2400 T~ -12 F4
1200 -24 ES

o SBUF is an 8-bit register used solely for
SERIAL serial communication

COMMUNICA- > For a byte data to be transferred via the
TION TxD line, it must be placed in the SBUF

PROGRAMMING register

= The moment a byte is written into SBUF, it is
_ framed with the start and stop bits and
SBUF Register transferred serially via the TxD line

» SBUF holds the byte of data when it is
received by 8051 RxD line
= When the bits are received serially via RxD, the

8051 deframes it by eliminating the stop and

start bits, making a byte out of the data received,
and then placing it in SBUF

MOV SBUF,#’D” ;load SBUF=44h, ASCIl for “D~
MOV SBUF,A ;copy accumulator into SBUF
MOV A, SBUF ;copy SBUF into accumulator

o SCON Is an 8-bit register used to

SERIAL program the start bit, stop bit, and data
COMMUNICA- bits of data framing, among other

TION things
PROGRAMMING

| SMO | SM1 | SM2 | REN | TB8 | RB8 | TI | RI
SCON Register

SMO0O SCON.7 Serial port mode specifier
SM1 SCON.6 Serial port mode specifier
SM2 SCON.5 Used for multiprocessor communication
REN SCON.4 Set/cleared by software to enable/disable reception
TB8 SCON.3 Not widely used
RB8 SCON.2 Not widely used
Tl SCON.1 Transmit interrupt flag. Set by HW at the
begin of the stop bit mode 1. And cleared by SW
RI SCON.O Receive interrupt flag. Set by HW at the

begin of the stop bit mode 1. And cleared by SW

Note: Make SM2, TB8, and RB8 =0

o SMO, SM1

COI\S/If/IRUIﬁlI_CA- » They determine the framing of data by
TION specifying the number of bits per character,
PROGRAMMING and the start and stop bits
SMO SM1
. 0 0 Serial Mode 0
SCON ReQISter Serial Mode 1, 8-bit data,
(cont’) 0 1 1 stop\&{t, 1 start bit

1 0 Serial ModL]
1 1 Serial Mode 3
of interest to us
o SM2
» This enables the multiprocessing capability
of the 8051

o REN (receive enable)

» It Is a bit-adressable register

SERIAL = When it is high, it allows 8051 to receive data on
COMMUNICA- RxD pin

TION = |f low, the receiver is disable

Ol RVAYIINGE o TI (transmit interrupt)
> When 8051 finishes the transfer of 8-bit

SCON Register character

(cont) = It raises Tl flag to indicate that it is ready to
transfer another byte

= Tl bit is raised at the beginning of the stop bit

a RI (receive interrupt)

» When 8051 receives data serially via RxD, it
gets rid of the start and stop bits and
places the byte in SBUF register

» |t raises the RI flag bit to indicate that a byte
has been received and should be picked up
before it is lost

» Rl is raised halfway through the stop bit

o In programming the 8051 to transfer
character bytes serially

SER'Q:‘CA 1. TMOD register Is loaded with the value
COMMU - 20H, indicating the use of timer 1 in mode
TION 2 (8-bit auto-reload) to set baud rate

PROGRAMMING 2. The TH1 is loaded with one of the values
to set baud rate for serial data transfer

Programming 3. The SCON register is loaded with the value
Serial Data 50H, Indicating serial mode 1, where an 8-
bit data is framed with start and stop bits

4. TR1 Is set to 1 to start timer 1
5. Tl is cleared by CLR TI instruction

6. The character byte to be transferred
serially is written into SBUF register

7. The TI flag bit is monitored with the use of
Instruction JNB T1,xXx to see if the

character has been transferred completely
8. To transfer the next byte, go to step 5

Transmitting

SERIAL
COMMUNICA-
TION
PROGRAMMING

Programming
Serial Data

Transmitting
(cont’)

Write a program for the 8051 to transfer letter “A” serially at 4800
baud, continuously.

Solution:
MOV TMOD,#20H ;timer 1,mode 2(auto reload)
MOV TH1,#-6 ;4800 baud rate
MOV SCON,#50H ;8-bit, 1 stop, REN enabled
SETB TR1 ;start timer 1
AGAIN: MOV SBUF,#”A” ;letter “A” to transfer
HERE: JNB TI,HERE ;walt for the last bit
CLR TI ;clear Tl for next char
SIMP AGAIN ;keep sending A

SERIAL
COMMUNICA-
TION
PROGRAMMING

Programming
Serial Data

Transmitting
(cont’)

Write a program for the 8051 to transfer “YES” serially at 9600
baud, 8-bit data, 1 stop bit, do this continuously

Solution:
MOV TMOD,#20H ;timer 1,mode 2(auto reload)

MOV TH1,#-3 ;9600 baud rate
MOV SCON,#50H ;8-bit, 1 stop, REN enabled

SETB TR1 ;start timer 1
AGAIN: MOV A,#°Y” ;transfer “Y”
ACALL TRANS
MOV A,#’E” ;transfer “E”
ACALL TRANS
MOV A,#’S” ;transfer “S”
ACALL TRANS
SIMP AGAIN ;keep doing 1t
;serial data transfer subroutine
TRANS: MOV SBUF,A ;load SBUF
HERE: JNB TI,HERE ;wait for the last bit
CLR TI ;get ready for next byte

RET

o The steps that 8051 goes through in

SERIAL transmitting a character via TxD
COMMUNICA- 1. The byte character to be transmitted is
TION written into the SBUF register
PROGRAMMING 2. The start bit Is transferred
3. The 8-bit character Is transferred on bit at
a time
Importance of 4. The stop bit is transferred
Tl Flag * |t is during the transfer of the stop bit that

8051 raises the TI flag, indicating that the last
character was transmitted
5. By monitoring the Tl flag, we make sure
that we are not overloading the SBUF
* |f we write another byte into the SBUF before
Tl is raised, the untransmitted portion of the
previous byte will be lost
6. After SBUF is loaded with a new byte, the
TI flag bit must be forced to O by CLR TI

In order for this new byte to be transferred

o By checking the TI flag bit, we know
whether or not the 8051 is ready to
transfer another byte

» It must be noted that Tl flag bit is raised by
8051 itself when it finishes data transfer

» It must be cleared by the programmer with
Instruction CLR T1

» If we write a byte into SBUF before the Tl
flag bit is raised, we risk the loss of a
portion of the byte being transferred

o The TI bit can be checked by
» The instruction JNB T1I ,xX

» Using an interrupt

SERIAL
COMMUNICA-
TION
PROGRAMMING

Importance of
Tl Flag

(cont’)

SERIAL
COMMUNICA-
TION
PROGRAMMING

Programming
Serial Data

Receiving

o In programming the 8051 to receive
character bytes serially

1.

TMOD register is loaded with the value
20H, indicating the use of timer 1 in mode
2 (8-bit auto-reload) to set baud rate

TH1 i1s loaded to set baud rate

3. The SCON register is loaded with the value

50H, indicating serial mode 1, where an 8-
bit data is framed with start and stop bits

TR1 Is set to 1 to start timer 1
Rl is cleared by CLR RI1 instruction

The RI flag bit is monitored with the use of
Instruction JNB R ,XxX to see If an entire

character has been received yet

When RI is raised, SBUF has the byte, its
contents are moved into a safe place

To receive the next character, go to step 5

SERIAL
COMMUNICA-
TION
PROGRAMMING

Programming
Serial Data

Receiving
(cont’)

Write a program for the 8051 to receive bytes of data serially, and
put them in P1, set the baud rate at 4800, 8-bit data, and 1 stop bit

Solution:
MOV TMOD,#20H ;timer 1,mode 2(auto reload)
MOV TH1,#-6 ;4800 baud rate
MOV SCON,#50H ;8-bit, 1 stop, REN enabled

SETB TR1 ;start timer 1
HERE: JNB RI,HERE ;wailt for char to come 1iIn
MOV A, SBUF ;saving itncoming byte In A
MOV P1,A ;send to port 1
CLR RI ;get ready to receive next
;byte

SIJMP HERE ;keep getting data

SERIAL
COMMUNICA-
TION
PROGRAMMING

Programming
Serial Data

Receiving
(cont’)

Example 10-5

Assume that the 8051 serial port is connected to the COM port of
IBM PC, and on the PC, we are using the terminal.exe program to
send and receive data serially. P1 and P2 of the 8051 are connected
to LEDs and switches, respectively. Write an 8051 program to (a)
send to PC the message “We Are Ready”, (b) receive any data send
by PC and put it on LEDs connected to P1, and (c) get data on
switches connected to P2 and send it to PC serially. The program
should perform part (a) once, but parts (b) and (c) continuously, use
4800 baud rate.

Solution:

ORG O

MOV P2,#0FFH ;make P2 an input port

MOV TMOD,#20H ;timer 1, mode 2

MOV TH1,#0FAH ;4800 baud rate

MOV SCON,#50H ;8-bit, 1 stop, REN enabled

SETB TR1 ;start timer 1

MOV DPTR,#MYDATA ;load pointer for message
H 1: CLR A

MOV A,@A+DPTR ;get the character

SERIAL
COMMUNICA-
TION
PROGRAMMING

Programming
Serial Data

Receiving
(cont’)

Example 10-5 (cont’)

JZ B 1 ;1T last character get out

ACALL SEND ;otherwise call transfer

INC DPTR ;hext one

SIMP H 1 ;stay 1n loop
B 1: MOV a,P2 ;read data on P2

ACALL SEND ;transter i1t serially

ACALL RECV ;get the serial data

MOV P1,A ;display 1t on LEDs

SJMP B 1 ;stay in loop indefinitely
,-——-serial data transfer. ACC has the data------
SEND: MOV SBUF,A ;load the data
H 2: JNB TI,H 2 ;stay here until last bit

;gone

CLR TI ;get ready for next char

RET ;return to caller
,-———Receive data serially In ACC-———--———--————-
RECV: JNB RI,RECV ;wait here for char

MOV A,SBUF ;save 1t In ACC

CLR RI ;get ready for next char

RET :return to caller

SERIAL
COMMUNICA-
TION
PROGRAMMING

Programming
Serial Data

Receiving
(cont’)

Example 10-5 (cont’)

,————— The message
MYDATA: DB
END

To PC

COM Port

“We Are Ready”,O0

8051

LED

SW

SERIAL
COMMUNICA-
TION
PROGRAMMING

Importance of
Rl Flag

o In receiving bit via its RxD pin, 8051
goes through the following steps
1. It receives the start bit

Indicating that the next bit is the first bit of the
character byte it is about to receive

2. The 8-bit character is received one bit at
time
3. The stop bit Is received

When receiving the stop bit 8051 makes RI = 1,
Indicating that an entire character byte has
been received and must be picked up before it
gets overwritten by an incoming character

SERIAL
COMMUNICA-
TION
PROGRAMMING

Importance of
Rl Flag

(cont’)

(cont’)

4. By checking the RI flag bit when it is
raised, we know that a character has been
received and is sitting in the SBUF register
= We copy the SBUF contents to a safe place Iin

some other register or memory before it is lost

5. After the SBUF contents are copied into a
safe place, the RI flag bit must be forced
to O by CLR RI in order to allow the next
received character byte to be placed In
SBUF

= Failure to do this causes loss of the received
character

o By checking the RI flag bit, we know

SERIAL whether or not the 8051 received a
COMMUNICA- character byte
TION > If we failed to copy SBUF into a safe place,
PROGRAMMING we risk the loss of the received byte
» It must be noted that RI flag bit is raised by
Importance of 8051 when it finish receive data
Rl Flag > It must be cleared by the programmer with

Instruction CLR RI

» If we copy SBUF into a safe place before
the RI flag bit Is raised, we risk copying
garbage

a The RI bit can be checked by
> The instruction JNB RI1 , XX

» Using an interrupt

(cont’)

o There are two ways to increase the
SERIAL baud rate of data transfer /[
COMMUNICA- / crystal is fixed
TION » To use a higher frequency crystal
PROGRAMMING » To change a bit in the PCON register

. o PCON register is an 8-bit register
Doubling Baud _ |
Rate » When 8051 is powered up, SMOD Is zero

» We can set it to high by software and
thereby double the baud rate

| - | - [eFa|cro| Po [IDL

It is not a bit- ‘\ MOV A,PCON ;place a copy of PCON in ACC
addressable SETB ACC.7 ;make D7=1 _
register MOV PCON, A :changing any other bits

SER IAL 11.0592 MHz SMOD :1_’“ 57600 Hz ‘
COM M U N I CA' AL Machine cycle freq IoTtime:
- > 0 se
TION oscillator o 921.6 kHz the Baud

28800 Hz
PROGRAMMING oo I v
DOUblmg Baud Baud Rate comparison for SMOD=0 and SMOD=1
Rate
(COI’]t’) TH1 (Decimal) (Hex) SMOD=0 SMOD=1
-3 FD 9600 19200
-6 FA 4800 9600
-12 F4 2400 4800

-24 E8 1200 2400

Example 10-6

SERIAL Assume that XTAL = 11.0592 MHz for the following program,
COMMUNICA- state (a) what this program does, (b) compute the frequency used
by timer 1 to set the baud rate, and (c) find the baud rate of the data

TION transfer.
PROGRAMMING
MOV A,PCON ;A=PCON
MOV ACC.7 ;make D7=1
Doubling Baud MOV PCON,A :SMOD=1, double baud rate
;with same XTAL freq.
Rate MOV TMOD,#20H ;timer 1, mode 2
(cont’) MOV TH1,-3 -19200 (57600/3 =19200)
MOV SCON,#50H ;8-bit data, 1 stop bit, RI
;enabled
SETB TR1 ;start timer 1
MOV A,#’B” ;transfer letter B
A 1: CLR TI ;make sure TI=0
MOV SBUF,A ;transfer it
H 1: JNB TI,H 1 ;stay here until the last

;bit 1s gone
SIJMP A 1 ;keep sending “B” again

SERIAL
COMMUNICA-
TION
PROGRAMMING

Doubling Baud
Rate

(cont’)

Example 10-6 (cont’)

Solution:

(a) This program transfers ASCII letter B (01000010
binary) continuously

(b) With XTAL = 11.0592 MHz and SMOD = 1 iIn the
above program, we have:

11.0592 / 12 = 921.6 kHz machine cycle frequency.
921.6 / 16 = 57,600 Hz frequency used by timer 1
to set the baud rate.

57600 / 3 = 19,200, the baud rate.

Find the TH1 value (in both decimal and hex) to set the baud rate
to each of the following. (a) 9600 (b) 4800 if SMOD=1. Assume
that XTAL 11.0592 MHz

Solution:

With XTAL = 11.0592 and SMOD = 1, we have timer frequency =
57,600 Hz.

(a) 57600/ 9600 = 6; so TH1 =-6 or TH1 = FAH

(b) 57600/ 4800 = 12; so TH1 =-12 or TH1 = F4H

Example 10-8
SERIAL Find the baud rate if TH1 = -2, SMOD =1, and XTAL = 11.0592
COMMUNICA- MHz. Is this baud rate supported by IBM compatible PCs?

TION Solution:

@I AW AV IN[€] | With XTAL =11.0592 and SMOD = 1, we have timer frequency =
57,600 Hz. The baud rate is 57,600/2 = 28,800. This baud rate is
: not supported by the BIOS of the PCs; however, the PC can be
DOUb“ng Baud programmed to do data transfer at such a speed. Also,

Rate HyperTerminal in Windows supports this and other baud rates.

(cont’)

Example 10-10
Write a program to send the message “The Earth is but One
SERIAL Country” to serial port. Assume a SW is connected to pin P1.2.
Monitor its status and set the baud rate as follows:
COMMUNICA SW =0, 4800 baud rate
TION SW = 1, 9600 baud rate
IR{OICIRVA\Y/ I\ A IN[€] | Assume XTAL = 11.0592 MHz, 8-bit data, and 1 stop bit.

Solution:

Doubling Baud SW BIT P1.2
Rate IATN- ORG OH ;starting position
(cont’) MOV TMOD,#20H
MOV TH1,#-6 ;4800 baud rate (default)
MOV SCON,#50H
SETB TR1
SETB Sw ;make SW an input
S1: JNB SW,SLOWSP ;check SW status
MOV A,PCON ;read PCON
SETB ACC.7 ;set SMOD high for 9600
MOV PCON,A ;write PCON

SIJMP OVER ;send message

SERIAL
COMMUNICA-
TION
PROGRAMMING

Doubling Baud
Rate

(cont’)

SLOWSP:
MOV A,PCON ;read PCON
SETB ACC.7 ;set SMOD low for 4800
MOV PCON,A :write PCON

OVER: MOV DPTR,#MESS1 ;load address to message
FN: CLR A
MOVC A,@A+DPTR ;read value

JZ S1 ;check for end of line
ACALL SENDCOM ;send value to serial port
INC DPTR ;move to next value
SIMP FN ;repeat
SENDCOM:
MOV SBUF,A ;place value i1In buffer
HERE: JNB TI,HERE ;wait until transmitted
CLR TI .clear
RET sreturn

MESS1: DB “The Earth i1s but One Country”,0
END

o Many new generations of 8051
PROGRAMMING . troll th t A
THE SECOND mlcrocc_)n rolier come wi WO Serla
SERIAL PORT ports, like DS89C4x0 and DS80C320

» The second serial port of DS89C4x0 uses
pins P1.2 and P1.3 for the Rx and Tx lines

» The second serial port uses some reserved
SFR addresses for the SCON and SBUF

* There is no universal agreement among the
makers as to which addresses should be used

— The SFR addresses of COH and C1H are set
aside for SBUF and SCON of DS89C4x0

= The DS89C4x0 technical documentation refers
to these registers as SCON1 and SBUF1

» The first ones are designated as SCONO
and SBUFO

DS89C4x0 pin diagram

PROGRAMMING
(T2) P1.0 1 Vee
THE SECOND (T2EX) P1.1 2 P0.0 (ADO)
SERIAL PORT (RXD1) P12 3 PO.1 (ADI)
(cont’) (TXD1) P13 4 P0.2 (AD2)
(INT2) P14 5 P0.3 (AD3)
(-INT3) P15 6 P0.4 (AD4)
(INT4) P1.6 7 P0.5 (ADS)
(-INTS) P1.7 ¢ DS8IC4x0 P0.6 (AD6)
RST 9 (89C420 PO.7 (AD7)
_EA/VPP
((ig 1122(1) 1(1) 89C430 3 ALE/-PROG
(-INTO) P3.2 L 89C440 PSEN
(-INT1) P3.3 5 89C450) P27 (ALS)
(TO) P3.4 14 2 P2.6 (Al4)
(T1) P3.5 I5 P2.5 (A13)
(-WR) P3.6 6 P24 (A12)
(-RD) P3.7 17 P23 (A1)
XTAL2 13 P2.2 (A10)
XTALI 9 P2.1 (A9)
GND 20 P2.0 (A8)

PROGRAMMING

THE SECOND
SERIAL PORT SFR Byte Addresses for DS89C4x0 Serial Ports
(cont) SFR First Serial Port Second Serial Port

(byte address)
SCON SCONO = 98H SCON1 = COH
SBUF SBUFO = 99H SBUF1 = C1H
TL TL1 = 8BH TL1 = 8BH
TH TH1 = 8DH TH1 = 8DH
TCON TCONO = 88H TCONO = 88H

PCON PCON = 87H PCON = 87H

o Upon reset, DS89¢4x0 uses Timer 1 for
PROGRAMMING tina baud rate of both serial port
THE SECOND setting baud rate of both serial ports

SERIAL PORT » While each serial port has its own SCON
(cont) and SBUF registers, both ports can use
Timerl for setting the baud rate

» SBUF and SCON refer to the SFR registers
of the first serial port
» Since the older 8051 assemblers do not support

this new second serial port, we need to define
them in program

= To avoid confusion, in DS89C4x0 programs we
use SCONO and SBUFO for the first and SCON1
and SBUF1for the second serial ports

PROGRAMMING
THE SECOND

SERIAL PORT
(cont’)

Example 10-11

Write a program for the second serial port of the DS89C4x0 to
continuously transfer the letter “A” serially at 4800 baud. Use 8-bit
data and 1 stop bit. Use Timer 1.

Solution:
SBUF1 EQU OC1H ;2nd serial SBUF addr
SCON1 EQU OCOH ;2nd serial SCON addr
TI1 BIT OC1H :;2nd serial Tl bit addr
RI1 BIT OCOH ;2nd serial RI bit addr

ORG OH ;starting position
MATIN:
MOV TMOD, #20H ;COM2 uses Timer 1 on reset
MOV TH1,#-6 4800 baud rate
MOV SCON1,#50H ;8-bit, 1 stop, REN enabled
SETB TR1 ;start timer 1
AGAIN:-MOV A,#”A” ;send char “A’
ACALL SENDCOM2
SIMP AGAIN
SENDCOM2:
MOV SBUF1,A ;COM2 has i1ts own SBUF
HERE: JNB TI1,HERE ;COM2 has i1ts own Tl flag
CLR TI1
RET

END

Example 10-14
Assume that a switch is connected to pin P2.0. Write a program to

sI=Telel=Y\VIVIIN[@ | monitor the switch and perform the following:
(a) If SW =0, send the message “Hello” to the Serial #0 port

THE SECOND (b) If SW =1, send the message “Goodbye” to the Serial #1 port.
SERIAL PORT [,

(cont’) SCON1 EQU OCOH

TI1 BIT OC1H

Swi BIT P2.0

ORG OH ;starting position
MOV TMOD,#20H

MOV TH1,#-3 ;9600 baud rate
MOV SCON,#50H

MOV SCON1,#50H

SETB TR1
SETB Swil ;make SW1 an input
Si1: JB SW1,NEXT :check SW1 status

MOV DPTR,#MESS1;if SW1=0 display “Hello”
FN: CLR A
MOVC A,@A+DPTR ;read value

JZ S1 :check for end of line
ACALL SENDCOM1 ;send to serial port
INC DPTR :move to next value

SIM FN

PROGRAMMING
THE SECOND

SERIAL PORT
(cont’)

MOV DPTR,#MESS2;1f SW1=1 display “Goodbye”
CLR A
MOVC A,@A+DPTR

JZ

S1

ACALL SENDCOM2

INC
SIM

SENDCOM1.:

HERE:

MOV
JNB
CLR
RET

DPTR
LN

SBUF, A
T1,HERE
Tl

SENDCOM2-

HERE1:

MESS1:
MESS2:

MOV
JNB
CLR
RET

SBUF1,A
TI11,HERE1L
TI1

DB ““Hello”,0
DB “Goodbye”,0

END

;read value

:check for end of line
;send to serial port
:move to next value

;place value i1n buffer
:walt until transmitted
:clear

;place value i1In buffer
;wart until transmitted
;clear

Example 10-15
SERIAL PORT Write a C program for 8051 to transfer the letter “A” serially at 4800

sI=TgTel=Y:\\V/I\VII\[e | baud continuously. Use 8-bit data and 1 stop bit.

IN C Solution:
#include <reg51.h>
e void main(void){
Transmitting TMOD=0x20" //use Timer 1, mode 2
Talo Receiving ggéﬁg)éf(éo //4800 baud rate
Data TR1=1;
while (1) {
SBUF=“A"; //place value i1n buffer
while (T1==0);
T1=0;
+
+

SERIAL PORT
PROGRAMMING
IN C

Transmitting
and Receiving
Data

(cont’)

Example 10-16
Write an 8051 C program to transfer the message “YES” serially at
9600 baud, 8-bit data, 1 stop bit. Do this continuously.

Solution:

#include <reg51.h>

voild SerTx(unsigned char);
void main(void){

TMOD=0x20; //use Timer 1, mode 2
TH1=0xFD; //9600 baud rate
SCON=0x50;
TR1=1; //start timer
while (1) {

SerTx(“Y?);

SerTx(“E”);

SerTx(“S”);
+

voild SerTx(unsigned char x){

SBUF=Xx; //place value i1n buffer
while (T1==0); //wait until transmitted
T1=0;

}

Example 10-17
SERIAL PORT Program the 8051 in C to receive bytes of data serially and put them

si=lglel=Y WV IN\[e] | in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit.

IN C

Solution:
#i@glud@ zregg%{h>
e void main(vol
Transmitting unsigned char myby}s; ;
o TMOD=0x20; use Timer 1, mode 2
and Receiving TH1=0xFA; /74800 baud rate
Data SCON=0x50;
: TR1=1; //start timer
(cont’) while (1) { //repeat forever
while (RI==0); //wait to receive
mybyte=SBUF; //save value
Pl=mybyte; //write value to port
RI=0;

}
}

SERIAL PORT
PROGRAMMING
IN C

Transmitting
and Receiving
Data

(cont’)

Example 10-19

Write an 8051 C Program to send the two messages “Normal Speed”
and “High Speed” to the serial port. Assuming that SW is connected
to pin P2.0, monitor its status and set the baud rate as follows:

SW =0, 28,800 baud rate

SW =1, 56K baud rate

Assume that XTAL = 11.0592 MHz for both cases.

Solution:
#include <reg5l1l.h>
sbit MYSW=P270; //input switch

void main(void){
unsigned char z;
unsigned char Messl[]=*“Normal Speed”;
unsigned char Mess2[]=*“High Speed”;

TMOD=0x20; //use Timer 1, mode 2
TH1=0xFF; //28800 for normal
SCON=0x50;

TR1=1; //start timer

SERIAL PORT i F(MYSW==0) {
PROGRAMMING for (z=0;z<12;z++) {

IN C SBUF=Mess1[z]; //place value i1n buffer
while(T1==0); //wait for transmit
T1=0;
Transmitting }
and Receiving |
else {
Data PCON=PCON|0x80; //for high speed of 56K
(cont’) for (z=0;z<10;z++) {

SBUF=Mess2[z]; //place value i1n buffer
while(TI1==0); //wait for transmit
TI1=0;

SERIAL PORT
PROGRAMMING
IN C

C Compilers
and the Second
Serial Port

Example 10-20

Write a C program for the DS89C4x0 to transfer the letter “A” serially
at 4800 baud continuously. Use the second serial port with 8-bit data
and 1 stop bit. We can only use Timer 1 to set the baud rate.

Solution:

#include <reg5l1.h>
sfr SBUF1=0xC1;
str SCON1=0xCO;
sbit TI11=0xC1;
void main(void){

TMOD=0x20; //use Timer 1, mode 2
TH1=0xFA; //4800 baud rate
SCON=0x50; //use 2nd serial port SCON1
TR1=1; //start timer
while (1) {
SBUF1=“A~; //use 2nd serial port SBUF1
while (T11==0); //wait for transmit
) T11=0;

}

SERIAL PORT
PROGRAMMING
IN C

C Compilers
and the Second
Serial Port

Example 10-21

Program the DS89C4x0 in C to receive bytes of data serially via the
second serial port and put them in P1. Set the baud rate at 9600, 8-bit
data and 1 stop bit. Use Timer 1 for baud rate generation.

Solution:

#include <reg5l1.h>

str SBUF1=0xC1;

str SCON1=0xCO;

sbit R11=0xCO;

void main(void){
unsigned char mybyte;

TMOD=0x20; //use Timer 1, mode 2
TH1=0xFD; //9600 baud rate
SCON1=0x50; //use 2nd serial port SCON1
TR1=1; //start timer

while (1) {

while (R11==0); //monitor RI1
mybyte=SBUF1; //use SBUF1
P2=mybyte; //place value on port
RI11=0;
+
+

INTERRUPTS
PROGRAMMING

The 8051 Microcontroller and Embedded
Systems. Using Assembly and C
Mazidi, Mazidi and McKinlay

Chung-Ping Young
TRl

a An /nterruptis an external or internal
event that interrupts the
microcontroller to inform it that a
device needs its service

a A single microcontroller can serve
several devices by two ways

> Interrupts

= Whenever any device needs its service, the
device notifies the microcontroller by sending it
an interrupt signal

= Upon receiving an interrupt signal, the
microcontroller interrupts whatever it is doing
and serves the device

= The program which is associated with the
Interrupt is called the /nterrupt service routine
(ISR) or interrupt handler

INTERRUPTS

Interrupts vs.
Polling

a (cont)

INTERRUPTS > Polling
= The microcontroller continuously monitors the
Interrupts vs. status of a given device
Polling = When the conditions met, it performs the
(cont’) service

= After that, it moves on to monitor the next
device until every one is serviced

o Polling can monitor the status of
several devices and serve each of
them as certain conditions are met

» The polling method is not efficient, since it

wastes much of the microcontroller’s time
by polling devices that do not need service

> ex. JNB TF,target

o The advantage of interrupts is that the
microcontroller can serve many
Interrupts vs. devices (not all at the same time)

Polling » Each devices can get the attention of the
(cont’) microcontroller based on the assigned
priority
» For the polling method, it is not possible to
assign priority since it checks all devices In
a round-robin fashion
a The microcontroller can also ignore

(mask) a device request for service
» This Is not possible for the polling method

INTERRUPTS

a For every interrupt, there must be an

INTERRUPTS Interrupt service routine (ISR), or
Interrupt Interrupt handler
Service Routine » When an interrupt is invoked, the micro-
controller runs the interrupt service
routine

» For every interrupt, there Is a fixed
location in memory that holds the address
of its ISR

» The group of memory locations set aside
to hold the addresses of ISRs is called
Interrupt vector table

o Upon activation of an interrupt, the
microcontroller goes through the
Steps in following steps
Executing an 1. It finishes the instruction it Is executing

Interrupt and saves the address of the next
Instruction (PC) on the stack

2. It also saves the current status of all the
Interrupts internally (i.e: not on the stack)

3. It jumps to a fixed location in memory,
called the interrupt vector table, that
holds the address of the ISR

INTERRUPTS

INTERRUPTS

Steps in
Executing an

Interrupt
(cont’)

(cont’)

4.

The microcontroller gets the address of

the ISR from the interrupt vector table

and jumps to it

= |t starts to execute the interrupt service
subroutine until it reaches the last instruction
of the subroutine which is RETI (return from
interrupt)

Upon executing the RETI instruction, the

microcontroller returns to the place

where it was interrupted

= First, it gets the program counter (PC)
address from the stack by popping the top
two bytes of the stack into the PC

= Then it starts to execute from that address

o Six Iinterrupts are allocated as follows
> Reset — power-up reset

Six Interrupts » Two Interrupts are set aside for the timers:
in 8051 one for timer O and one for timer 1

» Two Interrupts are set aside for hardware
external interrupts
» P3.2 and P3.3 are for the external hardware
interrupts INTO (or EX1), and INT1 (or EX2)
» Serial communication has a single
Interrupt that belongs to both receive and
transfer

INTERRUPTS

INTERRUPTS

Interrupt ROM Location Pin
: hex
Slx_ Interrupts meset (()OOO) o
In 8051 External HW (INTO) 0003 P3.2 (12)
(Cont’) Timer 0 (TFO) 000B
External HW (INT1) 0013 P3.3 (13)
Timer 1 (TF1) 001B

Serial COM (RI and TI) 0023

ORG O ;wake-up ROM reset location
LIMP MAIN ;by-pass Int. vector table

,———— the wa up program
ORG 30H

MAIN: Only three bytes of ROM space
assigned to the reset pin. We put

the LIMP as the first instruction
END :

and redirect the processor away
from the interrupt vector table.

o Upon reset, all interrupts are disabled
(masked), meaning that none will be
Enabling and responded to by the microcontroller if

Disabling an they are activated

WELEEIEN The interrupts must be enabled by
software in order for the
microcontroller to respond to them

» There Is a register called IE (interrupt
enable) that is responsible for enabling
(unmasking) and disabling (masking) the
Interrupts

INTERRUPTS

INTERRUPTS

Enabling and
Disabling an

Interrupt
(cont’)

ES

ET1
EX1
ETO
EXO

IE.7
IE.G
IE.5

IE.4
IE.3
IE.2
IE.1
IE.O

D7

IE (Interrupt Enable) Register

DO
ET2 ES ET1 EX1 ETO @ EXO

EA (enable all) must be set to 1 in order
for rest of the register to take effect

Disables all interrupts

Not implemented, reserved for future use

Enables or disables timer 2 overflow or capture
interrupt (8952)

Enables or disables the serial port interrupt
Enables or disables timer 1 overflow interrupt
Enables or disables external interrupt 1
Enables or disables timer 0 overflow interrupt
Enables or disables external interrupt O

INTERRUPTS

Enabling and
Disabling an

Interrupt
(cont’)

o To enable an interrupt, we take the
following steps:

1.

Bit D7 of the IE register (EA) must be set
to high to allow the rest of register to
take effect

The value of EA

» If EA =1, interrupts are enabled and will be
responded to if their corresponding bits in IE
are high

» |If EA =0, no interrupt will be responded to,
even If the associated bit in the IE register is
high

INTERRUPTS

Enabling and
Disabling an

Interrupt
(cont’)

Example 11-1

Show the instructions to (a) enable the serial interrupt, timer 0
interrupt, and external hardware interrupt 1 (EX1),and (b) disable
(mask) the timer 0 interrupt, then (c) show how to disable all the
Interrupts with a single instruction.

Solution:

(a) MOV 1E,#10010110B ;enable serial,
;timer 0, EX1

Another way to perform the same manipulation is
SETB 1E.7 ;EA=1, global enable

SETB IE.4 ;enable serial iInterrupt
SETB IE.1 ;enable Timer O interrupt
SETB IE.2 ;enable EX1

21

(b) CLR IE ;mask (disable) timer O
;interrupt only

(c) CLR 1E.7 ;disable all i1nterrupts

a The timer flag (TF) Is raised when the

TIMER timer rolls over

INTERRUPTS » In polling TF, we have to wait until the TF

IS raised

* The problem with this method is that the
microcontroller is tied down while waiting for TF
to be raised, and can not do anything else

» Using interrupts solves this problem and,
avoids tying down the controller

* |f the timer interrupt in the IE register is
enabled, whenever the timer rolls over, TF is
raised, and the microcontroller is interrupted in
whatever it is doing, and jumps to the interrupt
vector table to service the ISR

= |n this way, the microcontroller can do other
until it is notified that the timer has rolled over

TFO Timer O Interrupt Vector TF1 Timer 1 Interrupt Vector

TIMER

INTERRUPTS
(cont’)

Example 11-2

Write a program that continuously get 8-bit data from PO and sends it
to P1 while simultaneously creating a square wave of 200 us period
on pin P2.1. Use timer 0O to create the square wave. Assume that
XTAL =11.0592 MHz.

Solution:
We will use timer 0 in mode 2 (auto reload). THO = 100/1.085 us = 92

;——upon wake-up go to main, avoid using
;memory allocated to Interrupt Vector Table

ORG O0OOOOH
LIMP MAIN ;by-pass interrupt vector table

;——ISR for timer 0 to generate square wave
ORG OO0O0OBH ;Timer O interrupt vector table
CPL P2.1 ;toggle P2.1 pin
RETI -return from ISR

TIMER ;——The main program for initialization
INTERRUPTS ORG OO30H ;after vector table space
(cont’) MAIN: MOV TMOD,#02H ;Timer O, mode 2
MOV PO,#OFFH ;make PO an input port
MOV THO,#-92 ;THO=A4H for -92
MOV 1E,#82H ;1E=10000010 (bin) enable

-Timer O
SETB TRO ;Start Timer O
BACK: MOV A,PO ;get data from PO
MOV P1,A ;Issue 1t to P1
SIMP BACK ;keep doing i1t loop

;unless 1nterrupted by TFO
END

TIMER

INTERRUPTS
(cont’)

Example 11-3
Rewrite Example 11-2 to create a square wave that has a high portion
of 1085 us and a low portion of 15 us. Assume XTAL=11.0592MHz.

Use timer 1.

Solution:
Since 1085 us is 1000 x 1.085 we need to use mode 1 of timer 1.

;——upon wake-up go to main, avoid using
;memory allocated to Interrupt Vector Table
ORG OOOOH
LIMP MAIN ;by-pass 1nt. vector table
;——ISR for timer 1 to generate square wave
ORG 001BH ;Timer 1 Int. vector table
LIMP ISR_T1 ;jJump to ISR

;——The main program for initialization
TIMER ORG OO30H ;after vector table space
MAIN: MOV TMOD,#10H ;Timer 1, mode 1

INTERRUPTS MOV PO,#0FFH ;make PO an input port

(cont’) MOV TL1,#018H ;TL1=18 low byte of -1000
MOV TH1,#OFCH ;TH1=FC high byte of -1000
MOV IE,#88H ;10001000 enable Timer 1 iInt
SETB TR1 ;otart

BACK: MOV A,PO e[S MleE: | oW portion of the pulse is

MOV P1,A o FSSS{8[CR created by 14 MC
SIJMP BACK o (Gl 14 x 1.085 us = 15.19 us
;Timer 1 ISR. Must be relodadced,

ISR _ T1: CLR TR1 ;stop Timer 1
MOV R2,#4 ;
CLR P2.1 ;P2.1=0, start of low porti
HERE: DJNZ R2,HERE ;4x2 machine cycle

MOV TH1,#0FCH;load T1 high byte valu

SETB TR1 starts timerl
SETB P2.1 ;P2.1=1,back to high
RETI sreturn to main

END

TIMER

INTERRUPTS
(cont’)

Example 11-4

Write a program to generate a square wave if 50Hz frequency on pin
P1.2. This is similar to Example 9-12 except that it uses an interrupt
for timer 0. Assume that XTAL=11.0592 MHz

Solution:
ORG O
LIMP MAIN
ORG OOOBH ;ISR for Timer O
CPL P1.2
MOV TLO,#00
MOV THO,#ODCH
RETI
ORG 30H
;= ——————— main program for initialization
MAIN:MOV TMOD,#00000001B ;Timer O, Mode 1
MOV TLO,#00
MOV THO,#ODCH
MOV IE,#82H ;enable Timer O iInterrupt
SETB TRO
HERE :SIJMP HERE
END

o The 8051 has two external hardware

EXTERNAL - t
HARDWARE Interrupts
INTERRUPTS » Pin 12 (P3.2) and pin 13 (P3.3) of the 8051,

designated as INTO and INT1, are used as
external hardware interrupts

* The interrupt vector table locations 0003H and

0013H are set aside for INTO and INT1
» There are two activation levels for the

external hardware interrupts

= Level trigged

» Edge trigged

EXTERNAL

Activation of INTO

HARDWARE Level-triggered
INTERRUPTS o :
.) — o ITO > 0003
(cont’) (Pin 3.2) , -
Edge-triggered 1 (TCON.1)
Activation of INT1
Level-triggered
0
INT1 IT1 .,
(Pin 3.3) 1 - 0013

Edge-triggered 1 (TCON.3)

o In the level-triggered mode, INTO and
INT1 pins are normally high

» If a low-level signal is applied to them, it
triggers the interrupt

Ll 9 » Then the microcontroller stops whatever it
sl lilggels is doing and jumps to the interrupt vector
Interrupt table to service that interrupt

» The low-level signal at the INT pin must
be removed before the execution of the
last instruction of the ISR, RETI; otherwise,
another interrupt will be generated

o This Is called a /evel-triggered or level-
activated interrupt and is the default
mode upon reset of the 8051

EXTERNAL
HARDWARE
INTERRUPTS

Example 11-5
EXTERNAL Assume that the INT1 pin is connected to a switch that is normally
high. Whenever it goes low, it should turn on an LED. The LED is
HARDWARE connected to P1.3 and is normally off. When it is turned on it should
INRNSRAOIARSMN | stay on for a fraction of a second. As long as the switch is pressed low,
the LED should stay on.

Level-Triggered ISR 0 LED
ORG OOOOH
Interrupt LIMP MAIN ;by-pass inter
(cont’) ;vector table
;——ISR for INT1 to turn on LED
ORG O0013H ;INT1 ISR
SETB P1.3 ;turn on LED
MOV R3,#255 : :
BACK: DINZ R3.BACK :keep LED on for a [k
CLR P1.3 -turn of f the LED (IR gnSE
RETI -return from ISR to be turned on. If
it is kept activated,
;——MAIN program for initialization the LED stays on
ORG 30H
MAIN: MOV IE,#10000100B ;enable external INT 1
HERE: SJMP HERE ;stay here until get interrupted

END

a Pins P3.2 and P3.3 are used for normal
EXTERNAL 1/0 unless the INTO and INT1 bits in
RaAlaSSl the IE register are enabled

INTERRUPTS » After the hardware interrupts in the IE
register are enabled, the controller keeps

Sampling Low sampling the INTn pin for a low-level signal

Level-Triggered once each machine cycle
Interrupt

» According to one manufacturer’s data sheet,

* The pin must be held in a low state until the
start of the execution of ISR

= |f the INTn pin is brought back to a logic high
before the start of the execution of ISR there
will be no interrupt

= |If INTn pin is left at a logic low after the RETI
instruction of the ISR, another interrupt will be
activated after one instruction is executed

EXTERNAL
HARDWARE
INTERRUPTS

Sampling Low
Level-Triggered
Interrupt

(cont’)

» To ensure the activation of the hardware
Interrupt at the INTn pin, make sure that
the duration of the low-level signal Is
around 4 machine cycles, but no more

* This is due to the fact that the level-triggered
Interrupt is not latched

* Thus the pin must be held in a low state until
the start of the ISR execution

1 MC
— 4 machine cycles To INTO or
1.085us INT1 pins
4 x 1.085us

note: On reset, ITO (TCON.0) and IT1 (TCON.2) are both
low, making external interrupt level-triggered

o To make INTO and INT1 edge-

EXTERNAL i 1 int X Ust Broaram
LA SRR riggered interrupts, we must progra

INTERRUPTS

the bits of the TCON register

» The TCON register holds, among other bits,

Edge-Triggered the ITO and IT1 flag bits that determine
Interrupt level- or edge-triggered mode of the
hardware interrupt
* |ITO and IT1 are bits DO and D2 of the TCON
register
= They are also referred to as TCON.O and
TCON.2 since the TCON register is bit-
addressable

TCON (Timer/Counter) Register (Bit-addressable)
D7 DO

EXTERNAL
HARDWARE
INTERRUPTS

TF1 | TR1 | TFO | TRO | IE1 | IT1 | IEO | ITO

TF1 TCON.7 Timer 1 overflow flag. Set by
Edge-Triggered hardware when timer/counter
Interrupt 1 overflows. Cleared by hardware as
: the processor vectors to the interrupt
(cont) service routine

TR1 TCON.6 Timer 1 run control bit. Set/cleared by
software to turn timer/counter 1 on/off

TFO TCON.5 Timer 0 overflow flag. Set by
hardware when timer/counter O
overflows. Cleared by hardware as the
processor vectors to the interrupt
service routine

TRO TCON.4 Timer O run control bit. Set/cleared by
software to turn timer/counter O on/off

EXTERNAL
HARDWARE
INTERRUPTS

Edge-Triggered
Interrupt
(cont’)

TCON (Timer/Counter) Register (Bit-addressable) (cont’)

IE1

IT1

IEO

ITO

TCON.3

TCON.2

TCON.1

TCON.O

External interrupt 1 edge flag. Set by
CPU when the external interrupt edge
(H-to-L transition) is detected. Cleared
by CPU when the interrupt is processed

Interrupt 1 type control bit. Set/cleared
by software to specify falling edge/low-
level triggered external interrupt

External interrupt O edge flag. Set by
CPU when the external interrupt edge
(H-to-L transition) is detected. Cleared
by CPU when the interrupt is processed

Interrupt O type control bit. Set/cleared
by software to specify falling edge/low-
level triggered external interrupt

EXTERNAL
HARDWARE
INTERRUPTS

Edge-Triggered
Interrupt
(cont’)

The on-state duration
depends on the time
delay inside the ISR
for INT1

Assume that pin 3.3 (INT1) is connected to a pulse generator, write a
program in which the falling edge of the pulse will send a high to
P1.3, which is connected to an LED (or buzzer). In other words, the
LED is turned on and off at the same rate as the pulses are applied to
the INT1 pin.

When the falling edge of the signal

is applied to pin INT1, the LED

Solution: will be turned on momentarily.

ORG OOOOH

LIMP MAIN
;——I1SR for hardware ipnterrupt INT1l to turn on LED

ORG 0013H ;;ANT1 ISR

SETB P1.3 Jturn on LED

MOV R3,#255
BAZK: DJNZ R3,BAC

;keep the buzzer on for a while

CLR P1.3 ;turn off the buzzer
RETI ;return from ISR

;—————— MAIN program for initialization
ORG 30H

MAIN: SETB TCON.2 ;make INT1l edge-triggered int.
MOV IE,#10000100B ;enable External INT 1

HERE: SJMP HERE ;stay here until get iInterrupted
END

EXTERNAL
HARDWARE
INTERRUPTS

Sampling Edge-
Triggered
Interrupt

In edge-triggered interrupts

» The external source must be held high for
at least one machine cycle, and then held
low for at least one machine cycle

» The falling edge of pins INTO and INT1
are latched by the 8051 and are held by
the TCON.1 and TCON.3 bits of TCON
register

* Function as interrupt-in-service flags

* |t indicates that the interrupt is being serviced
now and on this INTn pin, and no new interrupt
will be responded to until this service is finished

Minimum pulse duration to
detect edge-triggered < 1MC > < 1 MC R
interrupts XTAL=11.0592MHz 1.085us 1.085us

o Regarding the ITO and IT1 bits in the
TCON reqister, the following two points
must be emphasized

» When the ISRs are finished (that is, upon

: execution of RETI), these bits (TCON.1 and

Sampling Edge- TCON.3) are cleared, indicating that the
Triggered interrupt is finished and the 8051 is ready
Interrupt to respond to another interrupt on that pin

» During the time that the interrupt service
routine is being executed, the INTn pin is
ignored, no matter how many times it
makes a high-to-low transition

= RETI clears the corresponding bit in TCON
register (TCON.1 or TCON.3)

= There is no need for instruction CLR TCON.1
before RETI in the ISR associated with INTO

EXTERNAL
HARDWARE
INTERRUPTS

(cont’)

EXTERNAL
HARDWARE
INTERRUPTS

Sampling Edge-
Triggered
Interrupt

(cont’)

Example 11-7

What is the difference between the RET and RET] instructions?
Explain why we can not use RET instead of RET]I as the last
instruction of an ISR.

Solution:
Both perform the same actions of popping off the top two bytes of the
stack into the program counter, and marking the 8051 return to where
it left off.

However, RETI also performs an additional task of clearing the
interrupt-in-service flag, indicating that the servicing of the interrupt
Is over and the 8051 now can accept a new interrupt on that pin. If
you use RET instead of RETI as the last instruction of the interrupt
service routine, you simply block any new interrupt on that pin after
the first interrupt, since the pin status would indicate that the interrupt
Is still being serviced. In the cases of TFO, TF1, TCON.1, and
TCON.3, they are cleared due to the execution of RETI.

SERIAL a TI (transfer interrupt) Is raised when
COMMUN |- the Ias_t b_|t of the frame_d d_ata_, the

CATION stop bit, Is transferred, indicating that
INTERRUPT the SBUF register is ready to transfer
the next byte

o RI (received interrupt) is raised when
the entire frame of data, including the
stop bit, Is received

» In other words, when the SBUF register
has a byte, RI is raised to indicate that the
received byte needs to be picked up
before it is lost (overrun) by new incoming
serial data

o In the 8051 there is only one interrupt

SERIAL : : L.
COMMUN |- set aside for serial communication
CATION » This interrupt is used to both send and
INTERRUPT receive data
> If the interrupt bit in the IE register (IE.4)
Rl and TI Flags IS enabled, when RI or Tl is raised the
and Interrupts 8051 gets interrupted and jumps to

memory location 0023H to execute the ISR

» In that ISR we must examine the Tl and RI
flags to see which one caused the interrupt
and respond accordingly

T
) 0023H
RI

Serial iInterrupt is invoked by Tl or Rl flags

SERIAL
COMMUNI-
CATION
INTERRUPT

Use of Serial
COM in 8051

o The serial interrupt is used mainly for
receiving data and is never used for
sending data serially

» This is like getting a telephone call in
which we need a ring to be notified

» If we need to make a phone call there are
other ways to remind ourselves and there
IS no need for ringing

» However In receiving the phone call, we
must respond immediately no matter what
we are doing or we will miss the call

SERIAL
COMMUNI-
CATION
INTERRUPT

Use of Serial
COM in 8051

(cont’)

Example 11-8

Write a program in which the 8051 reads data from P1 and writes it to
P2 continuously while giving a copy of it to the serial COM port to be
transferred serially. Assume that XTAL=11.0592. Set the baud rate at

9600.

Solution:
ORG
LIMP
ORG
LIMP
ORG

MAIN: MOV
MOV
MOV
MOV
MOV
SETB
BACK: MOV
MOV
MOV
SIMP

OOO0OOH

MAIN

23H

SERIAL ;jump to serial Int ISR
30H

P1,#OFFH ;make P1l an i1nput port
TMOD,#20H ;timer 1, auto reload
TH1,#0FDH ;9600 baud rate

SCON,#50H ;8-bit,1 stop, ren enabled
IE,10010000B ;enable serial int.

TR1 ;start timer 1

A,P1 ,read data from port 1
SBUF, A ;give a copy to SBUF
P2,A ;send 1t to P2

BACK ;stay 1In loop indefinitely

SERIAL
COMMUNI-
CATION
INTERRUPT

Use of Serial
COM in 8051

(cont’)

e —— SERIAL PORT ISR
ORG 100H
SERIAL: JB TI,TRANS; jump if Tl i1s high
MOV A,SBUF ;otherwise due to receive

CLR RI ;clear Rl since CPU doesn’t
RETI ;return from ISR

TRANS: CLR TI ;clear Tl since CPU doesn’t
RETI ;return from ISR
END

The moment a byte is written into SBUF it is framed and transferred
serially. As a result, when the last bit (stop bit) is transferred the Tl is
raised, and that causes the serial interrupt to be invoked since the
corresponding bit in the IE register is high. In the serial ISR, we check
for both TI and RI since both could have invoked interrupt.

SERIAL
COMMUNI-
CATION
INTERRUPT

Use of Serial
COM in 8051

(cont’)

Example 11-9

Write a program in which the 8051 gets data from P1 and sends it to
P2 continuously while incoming data from the serial port is sent to PO.
Assume that XTAL=11.0592. Set the baud rata at 9600.

Solution:
ORG
LIMP
ORG
LIMP
ORG

MAIN: MOV
MOV
MOV
MOV
MOV
SETB

BACK: MOV
MOV
SIMP

OOO0OOH

MAIN

23H

SERIAL ;jump to serial Int ISR
30H

P1,#0FFH ;make P1 an input port
TMOD,#20H ;timer 1, auto reload
TH1,#0FDH ;9600 baud rate

SCON,#50H ;8-bit,1 stop, ren enabled
IE,10010000B ;enable serial iInt.

TR1 ;start timer 1
A,P1 ;read data from port 1
P2,A ;send 1t to P2

BACK ;stay 1In loop indefinitely

SERIAL
COMMUNI-
CATION
INTERRUPT

Use of Serial
COM in 8051

(cont’)

ORG 100H

SERIAL PORT ISR

SERIAL: JB TI,TRANS;jump if TI is high

TRANS:

MOV A, SBUF
MOV PO, A
CLR RI
RETI

CLR TI
RETI

END

;otherwise due to receive
;send 1ncoming data to PO
;clear Rl since CPU doesn’t
;return from ISR

;clear Tl since CPU doesn’t
;return from ISR

Example 11-10
Write a program using interrupts to do the following:

SERIAL (a) Receive data serially and sent it to PO,
COMMUNI- (b) E;ve P1 port read and transmitted serially, and a copy given to
CATION (c) Make timer O generate a square wave of 5kHz frequency on PO.1.
INTERRUPT Assume that XTAL-11,0592. Set the baud rate at 4800.
Solution:
: ORG O
Clearing Rl and LIMP MAIN
Tl before RETI ORG O000BH ;ISR for timer O
CPL PO.1 ;toggle PO.1
RETI -return from ISR

ORG 23H ;
LIMP SERIAL ;jump to serial interrupt ISR
ORG 30H

MAIN: MOV P1,#0FFH ;make P1 an input port
MOV TMOD,#22H;timer 1,mode 2(auto reload)
MOV TH1,#0F6H;4800 baud rate
MOV SCON,#50H;8-bit, 1 stop, ren enabled
MOV THO,#-92 ;for 5kHZ wave

SERIAL
COMMUNI-
CATION
INTERRUPT

Clearing RI and
Tl before RETI

(cont’)

BACK:

MOV
SETB
SETB
MOV

MOV
MOV
SIMP

ORG

SERIAL:JB

TRANS:

MOV
MOV
CLR
RETI
CLR
RETI
END

I1E,10010010B ;enable serial i1nt.

TR1 ;start timer 1

TRO ;start timer O

A,P1 ;read data from port 1
SBUF,A ;give a copy to SBUF

P2,A ;send 1t to P2

BACK ;stay i1in loop indefinitely

gy SERIAL PORT ISR

100H
T1,TRANS; Jump 1f Tl 1s high
A,SBUF ;otherwise due to receilve

PO, A .send serial data to PO

RI .clear Rl since CPU doesn’t
;return from ISR

TI .clear Tl since CPU doesn’t

-return from ISR

SERIAL
COMMUNI-
CATION
INTERRUPT

Interrupt Flag
Bits

o The TCON register holds four of the
Interrupt flags, in the 8051 the SCON
register has the Rl and Tl flags

Interrupt Flag Bits

Interrupt Flag SFR Register Bit
External O IEQ TCON.1
External 1 IE1 TCON.3
Timer O TFO TCON.5
Timer 1 TF1 TCON.7
Serial Port T1 SCON.1

2 When the 8051 is powered up, the
priorities are assigned according to
the following

» In reality, the priority scheme is nothing
but an internal polling sequence in which
the 8051 polls the interrupts in the
sequence listed and responds accordingly

Interrupt Priority Upon Reset

Highest To Lowest Priority

INTERRUPT
PRIORITY

External Interrupt O (INTO)
Timer Interrupt O (TFO)
External Interrupt 1 (INT1)
Timer Interrupt 1 (TF1)

Serial Communication (RI + TI)

INTERRUPT

PRIORITY
(cont’)

Example 11-11

Discuss what happens if interrupts INTO, TFO, and INT1 are
activated at the same time. Assume priority levels were set by the
power-up reset and the external hardware interrupts are edge-
triggered.

Solution:

If these three interrupts are activated at the same time, they are
latched and kept internally. Then the 8051 checks all five interrupts
according to the sequence listed in Table 11-3. If any is activated, it
services it in sequence. Therefore, when the above three interrupts
are activated, IEOQ (external interrupt 0) is serviced first, then timer O
(TFO), and finally IE1 (external interrupt 1).

2 We can alter the sequence of interrupt
INTERRUPT
PRIORITY priority by assigning a higher priority
(cont’) to any one of the interrupts by
programming a register called IP
(interrupt priority)
» To give a higher priority to any of the

Interrupts, we make the corresponding bit
In the IP register high

» When two or more interrupt bits in the IP
register are set to high

= While these interrupts have a higher priority
than others, they are serviced according to the
sequence of Table 11-13

INTERRUPT

PRIORITY
(cont’)

Interrupt Priority Register (Bit-addressable)

DO
PT2 PS PT1 PX1I PTO @ PXO

-- IP.7
-- IP.6
PT2 IP.5
PS IP.4
PT1 IP.3
PX1 IP.2
PTO IP.1
PX0 IP.O

Reserved

Reserved

Timer 2 interrupt priority bit (8052 only)
Serial port interrupt priority bit

Timer 1 interrupt priority bit

External interrupt 1 priority bit

Timer O interrupt priority bit

External interrupt O priority bit

Priority bit=1 assigns high priority
Priority bit=0 assigns low priority

INTERRUPT

PRIORITY
(cont’)

Example 11-12

(a) Program the IP register to assign the highest priority to
INT1(external interrupt 1), then

(b) discuss what happens if INTO, INT1, and TFO are activated at the
same time. Assume the interrupts are both edge-triggered.

Solution:

(a) MOV 1P,#00000100B ;IP.2=1 assign INT1 higher priority. The
instruction SETB 1P .2 also will do the same thing as the above
line since IP is bit-addressable.

(b) The instruction in Step (a) assigned a higher priority to INT1 than
the others; therefore, when INTO, INT1, and TFO interrupts are
activated at the same time, the 8051 services INT1 first, then it
services INTO, then TFO. This is due to the fact that INT1 has a
higher priority than the other two because of the instruction in
Step (a). The instruction in Step (a) makes both the INTO and
TFO bits in the IP register 0. As a result, the sequence in Table
11-3 is followed which gives a higher priority to INTO over TFO

INTERRUPT

PRIORITY
(cont’)

Example 11-13
Assume that after reset, the interrupt priority is set the instruction
MOV 1P ,#00001100B. Discuss the sequence in which the

interrupts are serviced.

Solution:

The instruction “MQOV IP #00001100B” (B is for binary) and timer 1
(TF1)to a higher priority level compared with the reset of the
interrupts. However, since they are polled according to Table,
they will have the following priority.

Highest Priority External Interrupt 1 (INT1)
Timer Interrupt 1 (TF1)
External Interrupt O (INTO)
Timer Interrupt O (TFO)

Lowest Priority Serial Communication (RI+TI)

o In the 8051 a low-priority interrupt can
be interrupted by a higher-priority
Interrupt but not by another low-

Interrupt inside priority interrupt

an Interrupt > Although all the interrupts are latched and
kept internally, no low-priority interrupt
can get the immediate attention of the
CPU until the 8051 has finished servicing
the high-priority interrupts

INTERRUPT
PRIORITY

o To test an ISR by way of simulation
can be done with simple instructions to
set the interrupts high and thereby

Triggering cause the 8051 to jump to the

Interrupt by Interrupt vector table
Software

INTERRUPT
PRIORITY

» eX. If the IE bit for timer 1 is set, an
Instruction such as SETB TF1 will
Interrupt the 8051 in whatever it is doing
and will force it to jJump to the interrupt
vector table

= We do not need to wait for timer 1 go roll over
to have an interrupt

a2 The 8051 compiler have extensive
IRSERWVALLY support for the interrupts

NI » They assign a uniqgue number to each of
the 8051 interrupts
Interrupt Name Numbers
External Interrupt O (INTO) 0
Timer Interrupt O (TFO) 1
External Interrupt 1 (INT1) 2
Timer Interrupt 1 (TF1) 3
Serial Communication (RI + TI) 4
Timer 2 (8052 only) (TF2) 5

» It can assign a regis